Monographs:
[1] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Press, New York, 2002.
[2] J. Močkoř, Groups of Divisibility. Reidel Publishing Company, London, Boston, New York, 1983.
[3] J. Močkoř, J. Alajbegovic, Approximation Theorems in Commutative Algebra. Kluwer Academic Publishers, Boston, Dordrecht, 1992.
[4] V. Novák, Fuzzy Approach to Reasoning and Decision–Making. Kluwer, Dordrecht, 1992.
[5] V. Novák, Fuzzy množiny a jejich aplikace. SNTL, Praha, 1986.
[6] V. Novák, Fuzzy množiny a jejich aplikace. SNTL, Praha, 1990.
[7] V. Novák, Fuzzy Sets and Their Applications. Adam Hilger, Bristol, 1989.
[8] V. Novák, The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Plenum Press, New York, 1992.
[9] V. Novák, Základy fuzzy modelování. BEN-technická literatura, Praha, 2000.
[10] V. Novák, I. Perfilieva, Discovering the World with Fuzzy Logic. Springer-Verlag, Heidelberg, 2000.
[11] V. Novák, I. Perfilieva, J. Močkoř, Matematiceskije principy necetkoj logiki. Fizmatlit Nauka, Moskva, 2006.
[12] V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic. Kluwer Academic publishers, Boston/Dordrecht{London, 1999.
[13] I. Perfilieva, Applications of the Fuzzy Set Theory. VINITI, Moskva, Rusko, 1990.
[14] I. Perfiljeva, T. Afanasieva, N. Yarushkina, Intellectualjnyj Analiz Vremennyh Rjadov. Forum, Moscow, Russia, 2012.
Chapters in monographs:
[1] L. Běhounek, Z. Haniková, Set theory and arithmetic in fuzzy logic. In: Petr Hájek on Mathematical Fuzzy Logic, Springer, 2014, pp..
[2] R. Bělohlávek, Formal Concept Analysis In Geology. In: Fuzzy Logic in Geology, Academic Press, USA, 2003, pp. 191-237.
[3] R. Bělohlávek, Fuzzy Galois Connections and Fuzzy Concept Lattices: From Binary Relations to Conceptual Structures. In: Discovering World With Fuzzy Logic, Springer-Verlag, Heidelberg, 2000, pp. 462-494.
[4] R. Bělohlávek, A. Dvořák, D. Jedelský, V. Novák, Object Oriented Implementation of Fuzzy Logic Systems. In: Intelligent Systems for Manufacturing. Multi-Agent Systems and Virtual Organizations, Kluwer Academic Publishers, Boston, 1998, pp. 589-594.
[5] R. Bělohlávek, T. Funioková, V. Vychodil, Galois connections with truth stressers: foundations for formal concept analysis of object-attribute data with fuzzy attributes. In: computational Intelligence, Theory and Applications, Springer, Berlin, 2005, pp. 205-219.
[6] R. Bělohlávek, I. Chajda, The intermediate property between permutability and local permutability. In: General algebra and Applications, Shaker Verlag, Aachen, 2000, pp. 19-24.
[7] R. Bělohlávek, G. Klir, R. Demicco, The role of fuzzy logic in sedimentology and stratigraphic models. In: Soft Computing and Intelligent Data Analysis in Oil Exploitation., Elsevier, USA, 2003, pp. 189-217.
[8] R. Bělohlávek, R. Tagliaferri, A. Ciaramella, A. Di Nola, Fuzzy neural networks based on fuzzy logic algebras valued relations. In: Fuzzy Partial Differential Equations and Relational Equations: Reservoir Charaterization and Modeling, Physica-Verlag, Springer, 2004, pp. 116-129.
[9] P. Drozd, M. Štěpnička, A. Dolný, P. Völkl, Fuzzy modeling – a prospective tool for conservation biology. In: Environmental changes and biological assessment III. Scripta Facultatis Rerum Naturalium Universitatis Ostraviensis Nr. 163, Ostravská univerzita v Ostravě, Ostrava, 2006, pp. 7-14.
[10] A. Dvořák, Computational Properties of Fuzzy Logic Deduction. In: Computational Intelligence. Theory and Applications. Proceedings of 5th Fuzzy Days Dortmund, Springer-Verlag, Berlin, 1997, pp. 189-196.
[11] A. Dvořák, V. Novák, Fuzzy Type Theory as a Tool for Linguistic Analysis. In: The Logica Yearbook 2006, Filosofia, Prague, 2007, pp. 51-61.
[12] A. Dvořák, V. Novák, On the Extraction of Linguistic Knowledge in Databases Using Fuzzy Logic. In: Flexible Query Answering Systems. Recent Advances, Physica-Verlag, Heidelberg, 2001, pp. 445-454.
[13] A. Dvořák, V. Novák, The Extraction of Linguistic Knowledge Using Fuzzy Logic and Generalized Quantifiers.. In: Computational Intelligent Systems for Applied Research., World Scientific, Singapore, 2002, pp. 113-120.
[14] S. Gottwald, V. Novák, I. Perfilieva, Approximating Fuzzy Control Strategies via CRI. In: Proc. of IFSA 2003, Springer-Verlag, Berlín, 2003, pp. 203-210.
[15] E.P. Klement, R. Mesiar, A. Mesiarova-Zemankova, S. Saminger, Logical connectives for granular computing. In: Handbook of Granular Computing, Wiley, Chichester, 2008, pp. 205-224.
[16] V. Novák, A Brief History of Fuzzy Logic in the Czech Republic and Significance of P. Hájek for Its Development. In: Witnessed Years, Milton Keynes, 2009, pp. 209-225.
[17] V. Novák, A Concise Glance at the History of Fuzzy Logic in Czechia. In: Logic in Central and Eastern Europe, University Press of America, Lanham, 2013, pp. 526-542.
[18] V. Novák, Formal Fuzzy Logic and Its Use in Modeling of Vagueness and Computing with Words. In: Neural Networks and Soft Computing, Springer, Heidelberg, 2003, pp. 62-72.
[19] V. Novák, Formal Theories in Fuzzy Logic. In: Fuzzy Sets, Logics, and Reasoning about Knowledge, Kluwer, Dordrecht, 1999, pp. 213-235.
[20] V. Novák, From Classical to Fuzzy Type Theory. In: The Life and Work of Leon Henkin, Birkhauser, Basel, 2014, pp. 225-248.
[21] V. Novák, Fuzzy Logic. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Kluwer, Dordrecht, 1998, pp. 75-109.
[22] V. Novák, Fuzzy Logic: Applications to Natural Language. In: Encyclopedia of Artificial Intelligence, Second Edition, John Wiley & Sons, New York, 1992, pp. 515-521.
[23] V. Novák, Fuzzy logic deduction with words applied to ancient sea level estimation. In: Fuzzy logic in geology, Academic Press, Amsterdam, 2003, pp. 301-336.
[24] V. Novák, Fuzzy Sets in Natural Language Processing. In: Introduction to Fuzzy Logic Applications in Intelligent Systems, Kluwer, Dordrecht, 1991, pp. 185-200.
[25] V. Novák, How Ideas of L. A. Zadeh Gave Rise to Mathematical Fuzzy Logic. In: On Fuzziness, Springer, Berlin, 2013, pp. 479-486.
[26] V. Novák, Mathematical fuzzy logic: from vagueness to commonsense reasoning. In: Rehtorische Wissenschaft: Rede und Argumantation in Theorie und Praxis, Lit Verlag GmbH & Co. KG Wien, Wien, 2008, pp. 191-223.
[27] V. Novák, Mathematical fuzzy logic in modeling of natural language semantics. In: Fuzzy Logic — A Spectrum of Theoretical & Practical Issues, Springer, Berlin, 2007, pp. 145-182.
[28] V. Novák, Models and submodels of fuzzy theories. In: Intelligent Systems for Information Processing: From Representation to Applications, Elsevier, Amsterdam, 2003, pp. 363-373.
[29] V. Novák, On the Logical Basis of Approximate Reasoning. In: Fuzzy Approach to Reasoning and Decision-Making, Academia, Kluwer, Praha, Dordrecht, 1992, pp. 17-27.
[30] V. Novák, Towards Formalized Integrated Theory of Fuzzy Logic. In: Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer, Dordrecht, 1995, pp. 353-363.
[31] V. Novák, Weighted inference systems. In: Fuzzy Sets in Approximate Reasoning and Information Systems, Kluwer, Boston, 1999, pp. 191-241.
[32] V. Novák, J. Kovář, Linguistic IF-THEN Rules in Large Scale Application of Fuzzy Control. In: Fuzzy If-Then Rules in Computational Intelligence: Theory and Applications, Kluwer, Boston, 2000, pp. 223-241.
[33] V. Novák, I. Perfilieva, Evaluating Linguistic Expressions and Functional Fuzzy Theories in Fuzzy Logic. In: Computing with Words in Information/Intelligent Systems 1, Springer, Heidelberg, 1999, pp. 383-406.
[34] V. Novák, I. Perfilieva, Evaluating Linguistic Expressions and Functional Fuzzy Theories in Fuzzy Logic. In: Computing with Words in Information/Intelligent Systems 1, Springer-Verlag, Heidelberg, 1999, pp..
[35] V. Novák, I. Perfilieva, The principles of fuzzy logic: its mathematical and computational aspects. In: Lectures on Soft Computing, Springer, Heidelberg, 2001, pp. 189-238.
[36] V. Novák, I. Perfilieva, S. Gottwald, Fuzzy Relations Equations via Basic Predicate Fuzzy Logic. In: Computational Intelligent Systems for Applied Research, World Scientific, Singapore, 2002, pp. 113-120.
[37] V. Novák, I. Perfilieva, N.G. Jaruškina, A General Methodology for Managerial Decision Making using Intelligent Techniques. In: Recent Advances in Decision Making, Springer, Berlin, 2009, pp. 103-120.
[38] V. Novák, I. Perfiljeva, Mathematical Fuzzy Logic: A Good Theory for Practice. In: 35 Years of Fuzzy Set Theory: Celebratory Volume Dedicated to the Retirement of Etienne E. Kerre, Springer, Berlin, 2010, pp. 39-55.
[39] I. Perfilieva, Analytical Theory of Fuzzy IF-THEN Rules with Compositional Rule of Inference. In: Fuzzy Logic – a Spectrum of Theoretical&Practical Issues. Studies in Fuzziness and Soft Computing, Springer, Heidelberg, 2007, pp. 173-191.
[40] I. Perfilieva, Fuzzy Logic Normal Forms for Control Law Representation. In: Fuzzy Algorithms for Control, Kluwer, Boston, 1999, pp. 111-125.
[41] I. Perfilieva, Fuzzy numerical methods. In: Computational Intelligent Systems for Applied Research, World Scientific Publishing Co., Singapore, 2002, pp. 50-57.
[42] I. Perfilieva, Fuzzy Transform: Application to Reef Growth Problem. In: Fuzzy Logic in Geology, Academic Press, Amsterdam, 2003, pp. 275-300.
[43] I. Perfilieva, Fuzzy Transforms. In: Transactions on Rough Sets II. Fuzzy Sets and Rough Sets, Springer-Verlag, Berlin, 2005, pp. 63-81.
[44] I. Perfilieva, Fuzzy Transforms: A Challenge to Conventional Transforms. In: Advances in Images and Electron Physics, Elsevier Academic Press, Amsterdam, 2007, pp. 137-196.
[45] I. Perfilieva, Generic View On Continuous T-Norms and T-Conorms. In: Computational Intelligence, Theory and Applications, Springer, Heidelberg,, 2005, pp. 379-385.
[46] I. Perfilieva, Normal Forms for Fuzzy Relations and their Contribution to Universal Approximation. In: Intelligent Systems for Information Processing: From Representation to Applications, Elsevier, Amsterdam, 2003, pp. 381-392.
[47] I. Perfilieva, S. Lehmke, Safe Modeling of Fuzzy If–Then Rules. In: Computational Intelligence, Theory and Applications, Springer, Heidelberg,, 2005, pp. 235-240.
[48] I. Perfilieva, V. Novák, Some Consequences of Herbrand and McNaughton Theorems in Fuzzy Logic. In: Discovering World With Fuzzy Logic, Springer-Verlag, Heidelberg, 2000, pp. 271-295.
[49] I. Perfiljeva, M. Daňková, P. Hoďáková, M. Vajgl, F-Transform Based Image Fusion. In: Image Fusion, InTech, Rijeka, Croatia, 2011, pp. 3-22.
[50] I. Perfiljeva, J. Kupka, Bideterminant and Generalized Kronecker-Capelli Theorem for Fuzzy Relation Equations. In: Soft Computing: State of the Art Theory and Novel Applications, Springer-Verlag, Berlin, 2013, pp. 55-70.
[51] I. Perfiljeva, J. Kupka, Bideterminant and Generalized Kronecker-Capelli Theorem for Fuzzy Relation Equations. In: Soft Computing: State of the Art Theory and Novel Applications, Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin, 2013, pp. 55-70.
[52] J. Ramík, M. Vlach, Fuzzy linear programming and duality. In: Handbook o Computational Intelligence, Springer – Verlag, Berlin, Heidelberg, New York, 2015, pp. 143-162.
[53] J. Ramík, M. Vlach, Non-Controversial Definition of Fuzzy Sets. In: Transactions on Rough Sets II: Rough Sets and Fuzzy Sets, Springer, Berlin-Heidelberg-New York, 2004, pp. 201-207.
[54] R. Tagliaferri, A. Ciaramella, A. Di Nola, R. Bělohlávek, Fuzzy neural networks based on fuzzy logic algebras valued relations. In: Fuzzy Partial Differential Equations and Relational Equations: Reservoir Characterization and Modeling, Physica-Verlag, Springer, 2004, pp. 116-129.
[55] J. Tvrdík, L. Mišík, I. Křivý, Competing Heuristics in Evolutionary Algorithms. In: Intelligent Technologies-Theory and Applications, IOS Press, Amsterdam, The Netherlands, 2002, pp. 159-165.
[56] M.P. Wachowiak, R. Smolíková, M.G. Milanova, A.S. Elmagharby, Statistical nad Neural Approaches for Extimating Parameters of a Speckle Model Based on the Nakagami Distribution. In: Machine Learning and Data Mining in Pattern Recognition, Springer, Heidelberg, 2001, pp. 196-205.
Scientific journals:
[1] H. Agahi, R. Mesiar, Y. Ouyang, General Minkowski type inequalities for Sugeno integrals. FUZZY SET SYST 161 (2010) 708-715.
[2] H. Agahi, R. Mesiar, Y. Ouyang, New general extensions of Chebyshev type inequalities for Sugeno integrals. INT J APPROX REASON (2009) 135-140.
[3] T. Bacigál, V. Najjari, R. Mesiar, H. Bal, Additive generators of copulas. FUZZY SET SYST (2015) 42-50.
[4] V. BALÁŽ, L. Mišík, O. STRAUCH, J. Tóth, Distribution functions of ratio sequences IV. Period. Math. Hungar. 66 (2013) 1-22.
[5] B. Bede, H. Nobuhara, M. Daňková, A. Di Nola, Approximation by pseudo-linear operators. Fuzzy Sets and Systems 159 (2008) 804-820.
[6] B. Bede, H. Nobuhara, M. Daňková, A. Di Nola, Approximation by pseudo-linear operators. Fuzzy Sets and Systems 159 (2008) 804-820.
[7] L. Běhounek, A minimalistic many-valued theory of types. Journal of Logic and Computation (2014).
[8] L. Běhounek, Maxima and minima in fuzzified linear orderings. FUZZY SET SYST (2014).
[9] L. Běhounek, U. Bodenhofer, P. Cintula, S. Saminger-Platz, P. Sarkoci, Graded dominance and related graded properties of fuzzy connectives. FUZZY SET SYST (2014).
[10] L. Běhounek, M. Daňková, Relational compositions in Fuzzy Class Theory. FUZZY SET SYST 160 (2009) 1005-1036.
[11] R. Bělohlávek, A characterization of congruence classes of quasigroups. Mathematica Slovaca (2000) 377-380.
[12] R. Bělohlávek, A note on the extension principle. Journal of Mathematical Analysis and Applications (2000) 678-682.
[13] R. Bělohlávek, A remark on the ideal extension property. Acta Math. et Inf. Univ.Ostrav. (2001) 13-14.
[14] R. Bělohlávek, Backpropagation for interval patterns. Neural Network World (1997) 335-346.
[15] R. Bělohlávek, Birkhoff variety theorem and fuzzy logic. Arch. Math. Logic (2003) 781-790.
[16] R. Bělohlávek, Boolean part of BL-algebras. Acta Univ. Palacki Olomouc, Fac. re. nat., Mathematica (2003) 7-11.
[17] R. Bělohlávek, Combination of knowledge in fuzzy concept lattices. Int. Journal of Knowledge-Based Intelligent Engineering Systems (2002) 9-14.
[18] R. Bělohlávek, Concept equations. Journal of Logic and Computation (2004) 395-403.
[19] R. Bělohlávek, Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic (2004) 277-298.
[20] R. Bělohlávek, Concept lattices and order is uniquely given by its 1-cut: proof and consequences. Fuzzy Sets and Systems (2004) 447-458.
[21] R. Bělohlávek, Convex sets in algebras. Acta Univ. Palacki. Olomouc., Fac. rer. nat., Mathematica (2002) 21-33.
[22] R. Bělohlávek, Cutlike semantics for fuzzy logic and its applications. Int. J. General Systems (2003) 305-319.
[23] R. Bělohlávek, Determinism and fuzzy automata. Information Sciences (2002) 205-209.
[24] R. Bělohlávek, Feedforward networks with fuzzy signals. Soft Computing (1999) 37-43.
[25] R. Bělohlávek, Fuzzy closure operators. Journal of Mathematical Analysis and Applications (2001) 473-489.
[26] R. Bělohlávek, Fuzzy closure operators II. Soft Computing (2002) 53-64.
[27] R. Bělohlávek, Fuzzy closure operators induced by similarity. Fundamenta Informaticae (2003) 79-91.
[28] R. Bělohlávek, Fuzzy equational logic. Archive for Mathematical Logic (2002) 83-90.
[29] R. Bělohlávek, Fuzzy Galois connections. Math. Logic Quarterly (1999) 497-504.
[30] R. Bělohlávek, Fuzzy logical bidirectional associative memory. Information Sciences (2000) 91-103.
[31] R. Bělohlávek, Galois connections and concept lattices with globally-valued equalities. Multi.-Valued Logic (2001) 267-288.
[32] R. Bělohlávek, Lattices generated by binary fuzzy relations. Tatra Mount. Math. Publ. (1999) 11-19.
[33] R. Bělohlávek, Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quarterly (2001) 111-116.
[34] R. Bělohlávek, Logical precision in concept lattices. Journal of Logic and Computation (2002) 137-148.
[35] R. Bělohlávek, On the regularity of MV-algebras and Wajsberg hoops. Algebra Universalis (2000) 375-377.
[36] R. Bělohlávek, Poznámka ke knize Svět pojmů a logika (A note to the book uv{The world of concepts and logic}). The world of concepts and logic.
[37] R. Bělohlávek, Reduction and a simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae (2001) 277-285.
[38] R. Bělohlávek, Representation of concept lattices by bidirectional associative memories. Neural Computation (2000) 2279-2290.
[39] R. Bělohlávek, Similarity relations and BK-relational products. Information Sciences (2000) 287-295.
[40] R. Bělohlávek, Similarity relations in concept lattices. Journal of Logic and Computation (2000) 823-845.
[41] R. Bělohlávek, Some properties of residuated lattices. Czechoslovak Mathematical Journal (2003) 161-171.
[42] R. Bělohlávek, The block extension property. It. Journal of Pure and Applied Mathematics (2001) 147-151.
[43] R. Bělohlávek, T. Funioková, Fuzzy interior operators. Journal of General Systems (2004) 315-330.
[44] R. Bělohlávek, T. Funioková, Similarity and fuzzy tolerance spaces. Journal of Logic and Computation (2004) 827-855.
[45] R. Bělohlávek, T. Funioková, Similarity and fuzzy tolerance spaces. Journal of Logic and Computation (2006) 827-855.
[46] R. Bělohlávek, I. Chajda, A polynomial characterization of congruence classes. Algebra Universalis (1997) 235-242.
[47] R. Bělohlávek, I. Chajda, Congruence classes in regular varieties. Acta Math. Univ. Comen. (1999) 71-75.
[48] R. Bělohlávek, I. Chajda, Congruence Properties in Single Algebras. Discuss. Math. (1997) 67-78.
[49] R. Bělohlávek, I. Chajda, Relative deductive systems and congruence classes. Multiple-Valued Logic (2000) 259-266.
[50] R. Bělohlávek, I. Chajda, The block extension property. Journal of Pure and Applied Mathematics (2001) 147-151.
[51] R. Bělohlávek, G. Klir, I.H.W. Lewis, E. Way, On the capability of fuzzy set theory to represent concepts. Journal of General Systems (2002) 569-585.
[52] R. Bělohlávek, V. Novák, Learning rule base in linguistic expert systems. Soft Computing (2002) 79-88.
[53] R. Bělohlávek, V. Sklenář, J. Zacpal, Formal concept analysis with hierarchically ordered attributes. Journal of General Systems (2004) 283-294.
[54] J. Boroński, On the number of orbits of the homeomorphism group of solenoidal spaces. TOPOL APPL (2015) 98-106.
[55] J. Boroński, P. Oprocha, ON ENTROPY OF GRAPH MAPS THAT GIVE HEREDITARILY INDECOMPOSABLE INVERSE LIMITS. Proceedings of the Japan Academy, Series A (submitted) (2014).
[56] J. Boroński, P. Oprocha, On indecomposability in chaotic attractors. Proceedings of the American Mathematical Society (2014).
[57] J. Boroński, P. Oprocha, ROTATIONAL CHAOS AND STRANGE ATTRACTORS ON THE 2-TORUS. MATH Z (2015) 689-702.
[58] J. Boroński, F. Sturm, Finite-sheeted covering spaces and a Near Local Homeomorphism Property for pseudosolenoids. TOPOL APPL 161 (2013) 235-242.
[59] A. Bronevich, R. Mesiar, Invariant continuous aggregation functions. INT J GEN SYST 2 (2010) 177-188.
[60] J. Bukor, L. Mišík, J. Tóth, On mappings preserving measurability. INFORM SCIENCES 235 (2013) 323-328.
[61] M. Burda, P. Rusnok, M. Štěpnička, Mining Linguistic Associations for Emergent Flood Prediction Adjustment. Advances in Fuzzy Systems 2013 (2013) 1-10.
[62] H. Bustince, B. De Baets, J. Fernandez, R. Mesiar, J. Montero, A generalization of the migrativity property of aggregation functions. INFORM SCIENCES 191 (2012) 76-85.
[63] H. Bustince, J. Fernandez, A. Kolesárová, R. Mesiar, Directional monotonicity of fusion functions. (2014).
[64] H. Bustince, J. Fernandez, J. Sanz, M. Baczynski, R. Mesiar, Construction of strong equality index from implication operators. FUZZY SET SYST 211 (2013) 15-33.
[65] H. Bustince, A. Jurio, A. Pradera, R. Mesiar, G. Beliakov, Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions. EUR J OPER RES 225 (2013) 472-478.
[66] H. Bustince, N.M. Madrid, M. Ojeda-Aciego, The notion of weak-contradiction: definition and measures. IEEE Transaction Fuzzy Systems (2014) 1-13.
[67] A. Cena, M. Gagolewski, R. Mesiar, Problems and challenges of information resourcesproducers? clustering. J INFORMETR 9 (2015) 273-284.
[68] P. Cintula, E.P. Klement, R. Mesiar, M. Navara, Fuzzy logics with an additional involutive negation. FUZZY SET SYST (2010) 390-411.
[69] P. Cintula, E.P. Klement, R. Mesiar, M. Navara, Residuated logics based on strict triangular norms with an involutive negation. Math. Logic Quarterly 6 (2006) 269-282.
[70] M. Daňková, Approximation of extensional fuzzy relations over a residuated lattice. FUZZY SET SYST 161 (2010) 1973-1991.
[71] M. Daňková, Extensionality and Continuity of Fuzzy Relations. Journal of electrical engineering 12 (2000) 33-35.
[72] M. Daňková, Generalized extensionality of fuzzy relations. FUZZY SET SYST 148 (2004) 291-304.
[73] M. Daňková, Normal forms for fuzzy logic functions. Journal of electrical engineering 12 (2003) 80-84.
[74] M. Daňková, On approximate reasoning with graded rules. FUZZY SET SYST 158 (2007) 652-673.
[75] M. Daňková, On approximate reasoning with graded rules. FUZZY SET SYST 158 (2007) 652-673.
[76] M. Daňková, Representation of Logic Formulas by Normal Forms. KYBERNETIKA 38 (2002) 717-728.
[77] M. Daňková, A. Dvořák, Characterization and approximate representation of extensional fuzzy relations. Journal of Electrical Engineering 12 (2004) 51-55.
[78] M. Daňková, I. Perfilieva, Logical Approximation II. SOFT COMPUT 7 (2003) 228-233.
[79] M. Daňková, M. Štěpnička, Fuzzy Transform as an Additive Normal Form. FUZZY SET SYST 157 (2006) 1024-1035.
[80] M. Daňková, R. Valášek, Full Fuzzy Transform and the Problem of Image Fusion. Journal of electrical engineering 12 (2006) 82-84.
[81] B. De Baets, H. De Meyer, R. Mesiar, Binary survival aggregation functions. FUZZY SET SYST (2012) 83-102.
[82] B. De Baets, H. De Meyer, R. Mesiar, Lipschitz continuity of copulas wrt Lp-norms. NONLINEAR ANAL-THEOR 72 (2010) 3722-3731.
[83] B. De Baets, H. Demeyer, R. Mesiar, Asymmetric semilinear copulas. Kybernetika 43 (2007) 221-233.
[84] B. De Baets, H. Demeyer, R. Mesiar, Asymmetric semilinear copulas. Kybernetika 43 (2007) 221-233.
[85] B. Debaets, H. Demeyer, J. Kalicka, R. Mesiar, Flipping and cyclic shifting of binary aggregation functions. Fuzzy Sets and Systems (2009) 752-765.
[86] B. DeBaets, H. DeMeyer, J. Kalicka, R. Mesiar, On the relationship between modular functions and copulas. FUZZY SET SYST (2014).
[87] F. Di Martino, V. Loia, I. Perfilieva, S. Sessa, An image coding/decoding method based on direct and inverse fuzzy transforms. International Journal of Appr. reasoning 48 (2008) 110-131.
[88] F. Di Martino, V. Loia, I. Perfilieva, S. Sessa, An image coding/decoding method based on direct and inverse fuzzy transforms. International Journal of Appr. reasoning 48 (2008) 110-131.
[89] A. Di Nola, A. Lettieri, V. Novák, I. Perfilieva, Algebraic Analysis of Fuzzy Systems. Fuzzy Sets and Systems 158 (2007) 1-22.
[90] A. Di Nola, A. Lettieri, V. Novák, I. Perfilieva, Algebraic Analysis of Fuzzy Systems. Fuzzy Sets and Systems 158 (2007) 1-22.
[91] F. Durante, E.P. Klement, R. Mesiar, C. Sempi, Conjunctors and their residual implicators: characterizations and construction methods. Mediterranian Journal of Mathematics 4 (2007) 343-356.
[92] F. Durante, E.P. Klement, R. Mesiar, C. Sempi, Conjunctors and their residual implicators: characterizations and construction methods. Mediterranian Journal of Mathematics 4 (2007) 343-356.
[93] F. Durante, R. Mesiar, P.L. Papini, The lattice-theoretic structure of the sets of triangular norms and semi-copulas. NONLINEAR ANAL-THEOR 69 (2008) 46-52.
[94] F. Durante, R. Mesiar, P.L. Papini, The lattice-theoretic structure of the sets of triangular norms and semi-copulas. NONLINEAR ANAL-THEOR 69 (2008) 46-52.
[95] A. Dvořák, On Linguistic Approximation in the Frame of Fuzzy Logic Deduction. Soft Computing 3 (1999) 111-116.
[96] A. Dvořák, On Preselection of Rules in Fuzzy Logic Deduction. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 563-572.
[97] A. Dvořák, H. Habiballa, V. Novák, V. Pavliska, The concept of LFLC 2000 – its specificity, realization and power of applications. COMPUT IND 51 (2003) 269-280.
[98] A. Dvořák, M. Holčapek, Fuzzy measures and integrals defined on algebras of fuzzy subsets over complete residuated lattices. INFORM SCIENCES 185 (2012) 205-229.
[99] A. Dvořák, M. Holčapek, L-fuzzy Quantifiers of Type <1> Determined by Fuzzy Measures. FUZZY SET SYST 160 (2009) 3425-3452.
[100] A. Dvořák, M. Holčapek, Type <1,1> Fuzzy Quantifiers Determined by Fuzzy Measures on Residuated Lattices. Part I: Basic Definitions and Examples. FUZZY SET SYST 242 (2014) 31-55.
[101] A. Dvořák, M. Holčapek, Type <1,1> Fuzzy Quantifiers Determined by Fuzzy Measures on Residuated Lattices. Part II: Permutation and Isomorphism Invariances. FUZZY SET SYST 242 (2014) 56-88.
[102] A. Dvořák, D. Jedelský, J. Kostra, The Fields of Degree Seven over Rationals with a Normal Basis Generated by a Unit. Mathematica Slovaca 49 (1999) 143-153.
[103] A. Dvořák, V. Novák, Budoucnost robotů i aut: fuzzy. biz 12 (2007) 69-73.
[104] A. Dvořák, V. Novák, Budoucnost robotů i aut: fuzzy. biz 12 (2007) 69-73.
[105] A. Dvořák, V. Novák, Formal Theories and Linguistic Descriptions.. FUZZY SET SYST 143 (2004) 169-188.
[106] A. Dvořák, V. Novák, Fuzzy Logic Deduction with Crisp Observations. SOFT COMPUT 8 (2004) 256-263.
[107] A. Dvořák, V. Novák, Towards Automatic Modeling of Economic Texts. Mathware & Soft Computing 14 (2007) 217-231.
[108] A. Dvořák, V. Novák, Towards Automatic Modeling of Economic Texts. Mathware & Soft Computing 14 (2007) 217-231.
[109] A. Dvořák, V. Novák, V. Pavliska, Rules, Inferences and Robust Approximation at Work. ERCIM News 64 (2006) 31-32.
[110] A. Dvořák, M. Štěpnička, L. Štěpničková, On Redundancies in Systems of Fuzzy/Linguistic IF-THEN Rules under Perception-based Logical Deduction Inference. FUZZY SET SYST (2014).
[111] M. Dyba, M. Elzekey, V. Novák, Non-commutative first-order EQ-logics. FUZZY SET SYST (2014).
[112] M. Dyba, V. Novák, EQ-logics with delta connective. Iranian Journal of Fuzzy Systems 12 (2015) 41-61.
[113] M. Elzekey, Balanced Implications and the Law of Importation. Fuzzy sets and Systems Submitted (2014).
[114] M. ElZekey, J. Medina, R. Mesiar, Lattice-based sums. INFORM SCIENCES 223 (2013) 270-284.
[115] M. ElZekey, V. Novák, R. Mesiar, On good EQ-algebras. Fuzzy Sets and Systems 178 (2011) 1-23.
[116] J. Fodor, E.P. Klement, R. Mesiar, CROSS-MIGRATIVE TRIANGULAR NORMS. International Journal of Intelligent Systems (2012) 411-428.
[117] I. Formánek, R. Farana, Drive Dynamic Analysis – the Key to Optimal Drive Performance. Applied Mechanics and Materials (2014) 208-215.
[118] M. Gagolewski, R. Mesiar, Aggregating different paper quality measures with a generalized h-index. J INFORMETR (2012) 566-579.
[119] M. Gagolewski, R. Mesiar, Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem. INFORM SCIENCES (2014) 166-174.
[120] R. Ghiselli-Ricci, R. Mesiar, Multi-attribute aggregation operators. FUZZY SET SYST (2011) 1-13.
[121] R. Ghiselli-Ricci, R. Mesiar, On the Lipschitz property of strict triangular norms. International Journal of General Systems 4 (2007) 127-146.
[122] R. Giuliano-Antonini, G. Grekos, L. Mišík, On weighted densities. Czechoslovak Mathematical Journal 57 (2007) 947-962.
[123] R. Giuliano-Antonini, G. Grekos, L. Mišík, On weighted densities. Czechoslovak Mathematical Journal 57 (2007) 947-962.
[124] S. Gottwald, V. Novák, An Approach Towards Consistenc Degrees of Fuzzy Theories. Journal of General Systems (2000) 499-510.
[125] M. Grabisch, J. Marichal, R. Mesiar, E. Pap, Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes. INFORM SCIENCES (2011) 23-43.
[126] M. Grabisch, J. Marichal, R. Mesiar, E. Pap, Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes. INFORM SCIENCES (2011) 23-43.
[127] M. Grabisch, J. Marichal, R. Mesiar, E. Pap, Aggregation functions: Means. INFORM SCIENCES (2011) 1-22.
[128] H. Habiballa, INFERENCE STRATEGIES FOR FUZZY DESCRIPTION LOGIC. APLIMAT – Journal of Applied Mathematics 2 (2008) 411-422.
[129] H. Habiballa, INFERENCE STRATEGIES FOR FUZZY DESCRIPTION LOGIC. APLIMAT – Journal of Applied Mathematics 2 (2008) 411-422.
[130] H. Habiballa, Mathematical Logic and Deduction in Computer Science. Informatics in ed. 1 (2008) 1-13.
[131] H. Habiballa, Mathematical Logic and Deduction in Computer Science. Informatics in ed. 1 (2008) 1-13.
[132] H. Habiballa, RESOLUTION REASONING IN FUZZY PREDICATE LOGIC. KYBERNETIKA (2008).
[133] H. Habiballa, RESOLUTION REASONING IN FUZZY PREDICATE LOGIC. KYBERNETIKA (2008).
[134] H. Habiballa, V. Pavliska, System for time series prediction. Aplimat – Journal of applied mathematics 1 (2009) 511-518.
[135] P. Hájek, R. Mesiar, On copulas, quasicopulas and fuzzy logic. SOFT COMPUT (2008) 1239-1243.
[136] P. Hájek, R. Mesiar, On copulas, quasicopulas and fuzzy logic. SOFT COMPUT (2008) 1239-1243.
[137] L. Halčinová, O. Hutník, R. Mesiar, On some classes of distance distribution function-valued submeasures. NONLINEAR ANAL-THEOR (2011) 1545-1554.
[138] J. Hančl, P. Corvaja, A transcendence criterion for infinite product. Rend. Lincei. Mat. Appl. 18 (2007) 295-303.
[139] J. Hančl, F. Filip, Irrational measure of sequences. Hiroshima Journal of Mathematics 35 (2005) 1-14.
[140] J. Hančl, A. Jaššová, P. Lertchoosakul, R. Nair, On the metric theory of p-adic continued fractions. INDAGAT MATH NEW SER 24 (2013) 42-56.
[141] J. Hančl, A. JAŠŠOVÁ, P. Lertchoosakul, R. Nair, Polynomial actions in positive characteristic. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS 280 (2013) 37-42.
[142] J. Hančl, O. Kolouch, Irrationality of infinite products. PUBL MATH-DEBRECEN 83 (2013) 667-681.
[143] J. Hančl, M. Leinonen, K. Leppala, T. Matala-aho, Explicit irrationality measures for continued fractions. J NUMBER THEORY 132 (2012) 1758-1769.
[144] J. Hančl, T. Matala-aho, K. Leppala, T. Torma, On irrationality exponents of generalized continued fractions. J NUMBER THEORY 151 (2015) 18-35.
[145] J. Hančl, L. Mišík, J. Tóth, Asymptotic distance and its application. ROCKY MT J MATH 41 (2011) 177-188.
[146] J. Hančl, L. Mišík, J. Tóth, Asymptotic distance and its application. ROCKY MT J MATH 41 (2011) 177-188.
[147] J. Hančl, L. Mišík, J. Tóth, Cluster points of sequences of fuzzy real numbers. SOFT COMPUT 14 (2010) 399-404.
[148] J. Hančl, R. Nair, J. Šustek, On the Lebesgue Measure of the Expressible Sets of Certain Sequences. Indag. Math. 17 (2006) 567-581.
[149] J. Hančl, R. Nair, J. Šustek, S. Pulcerová, On expressible sets and p-adic numbers. P EDINBURGH MATH SOC 54 (2011) 411-422.
[150] J. Hančl, L. Novotný, R. Nair, On expressible sets for products.. Periodica Mathematica Hungarica 69 (2014) 199-206.
[151] J. Hančl, S. Pulcerová, O. KOLOUCH, J. Štěpnička, A note on the transcendence of infinite products. CZECH MATH J 62 (2012) 613-623.
[152] J. Hančl, P. Rucki, A Generalization of Sándor’s Theorem. Commentarii Mathematici Universitatis Sancti Pauli 55 (2006) 97-111.
[153] J. Hančl, P. Rucki, A note to the transcendence of special infinite series. Mathematica Slovaca 56 (2006) 409-414.
[154] J. Hančl, P. Rucki, The transcendence of certain infinite series. Rocky Mountain Journal of Mathematics. 35 (2005) 531-537.
[155] J. Hančl, P. Rucki, J. Šustek, A Generalization of Sandor’s Theorem Using Iterated Logarithms. Kumamoto J. Math.. 19 (2006) 25-36.
[156] J. Hančl, A. Schinzel, J. Šustek, On Expressible Sets of Geometric Sequences. Functiones approximatio 38 (2008) 121-145.
[157] J. Hančl, A. Schinzel, J. Šustek, On Expressible Sets of Geometric Sequences. Functiones approximatio 38 (2008) 121-145.
[158] J. Hančl, S. Sobková, Criteria for rapidly convergence sequences to be linearly unrelated. JP Journal of Algebra, Number Theory and application. 5 (2005) 205-219.
[159] J. Hančl, S. Sobková, T. Matala-aho, Continued fractional measure of irrationality. J MATH KYOTO U 1 (2010).
[160] J. Hančl, J. Štěpnička, A note to the irrationality measure. MATH SCAND 104 (2009) 117-123.
[161] J. Hančl, J. Štěpnička, A note to the irrationality measure. MATH SCAND 104 (2009) 117-123.
[162] J. Hančl, J. Štěpnička, On the trancendence of some infinite series. GLASGOW MATH J 50 (2008) 27-32.
[163] J. Hančl, J. Štěpnička, On the trancendence of some infinite series. GLASGOW MATH J 50 (2008) 27-32.
[164] J. Hančl, J. Štěpnička, J. Šustek, Linearly Unrelated Sequences and Problem of Erdos. RAMANUJAN J 17 (2008) 358-372.
[165] J. Hančl, J. Štěpnička, J. Šustek, Linearly Unrelated Sequences and Problem of Erdos. RAMANUJAN J 17 (2008) 358-372.
[166] J. Hančl, J. Šustek, Boundedly Expressible Sets. CZECH MATH J (2009) 649-654.
[167] J. Hančl, J. Šustek, Boundedly Expressible Sets. CZECH MATH J (2009) 649-654.
[168] J. Hančl, J. Šustek, Expressible Sets of Sequences with Hausdorff Dimension Zero. Monatshefte fur Mathematik 152 (2007) 315-320.
[169] J. Hančl, J. Šustek, A. Jaššová, Lebesgue measure and Hausdorff dimension of special sets of real numbers from (0,1). RAMANUJAN J 28 (2012) 15-23.
[170] J. Hančl, J. Šustek, R. Nair, P. Rucki, D. Bodiagin, On summing to arbitrary real numbers. Elemente der Mathematik 63 (2008) 30-34.
[171] J. Hančl, J. Šustek, R. Nair, P. Rucki, D. Bodiagin, On summing to arbitrary real numbers. Elemente der Mathematik 63 (2008) 30-34.
[172] J. Hančl, J. Šustek, L. Novotný, R. Nair, On the Hausdorff Dimension of the Expressible Set of Certain Sequences.. ACTA ARITH 155 (2012) 85-90.
[173] J. Hančl, R. Tijdeman, On the irrationality of factorial series. Acta Arithmetica. 118 (2005) 383-401.
[174] J. Hančl, R. Tijdeman, On the irrationality of polynomial Cantor series. ACTA ARITH 133 (2008) 37-52.
[175] J. Hančl, R. Tijdeman, On the irrationality of polynomial Cantor series. ACTA ARITH 133 (2008) 37-52.
[176] J. Hančl, R. Tijdeman, On the irrationality of the factorial series III. INDAGAT MATH NEW SER 20 (2009) 537-549.
[177] J. Haslinger, D. Jedelský, T. Kozubek, J. Tvrdík, Genetic and random search methods in optimal shape design problems. J GLOBAL OPTIM (2000) 109-131.
[178] M. Holčapek, Monadic L-fuzzy quantifiers of the type <1verb_^_n,1>. FUZZY SET SYST 159 (2008) 1811-1835.
[179] M. Holčapek, Monadic L-fuzzy quantifiers of the type <1verb_^_n,1>. FUZZY SET SYST 159 (2008) 1811-1835.
[180] M. Holčapek, M. Štěpnička, MI-algebras: a new framework for arithmetics of (extensional) fuzzy numbers. FUZZY SET SYST (2014) 102-131.
[181] F. Huňka, Object Oriented Software for Fuzzy Arithmetic. International Journal of Computing Anticipatory Systems 20 (2008) 250-261.
[182] F. Huňka, Object Oriented Software for Fuzzy Arithmetic. International Journal of Computing Anticipatory Systems 20 (2008) 250-261.
[183] F. Huňka, D. Vymětal, M. Hučka, J. Kašík, Production Planning Model Using REA Ontology. E + M Ekonomie a Management Economics and Management 4 (2008) 93-102.
[184] F. Huňka, D. Vymětal, M. Hučka, J. Kašík, Production Planning Model Using REA Ontology. E + M Ekonomie a Management Economics and Management 4 (2008) 93-102.
[185] O. Hutník, R. Mesiar, On a certain class of submeasures based on triangular norms. INT J UNCERTAIN FUZZ (2009) 297-316.
[186] M.A. Ince, F. Karacal, R. Mesiar, MEDIAN AS A NULLNORM ON BOUNDED LATTICES. (2014).
[187] M. Janošek, R. Farana, Traffic lights strategy adaptation. American Journal of Mechanical Engineering 1 (2013) 226-230.
[188] B. Jayaram, M. Baczynski, R. Mesiar, R-implications and the exchange principle: The case of border continuous t-norms. FUZZY SET SYST (2013) 93-105.
[189] B. Jayaram, R. Mesiar, On Special Fuzzy Implications. FUZZY SET SYST 14 (2009) 2063-2085.
[190] G. Jenča, A. Di Nola, M. Holčapek, The Category of MV-pairs. LOG J IGPL 17 (2009) 395-412.
[191] G. Jenča, A. Di Nola, M. Holčapek, The Category of MV-pairs. LOG J IGPL 17 (2009) 395-412.
[192] T. Jwaid, H. De Meyer, R. Mesiar, B. De Baets, The role of generalized convexity in conic copula constructions. J MATH ANAL APPL 425 (2015) 864-885.
[193] N. Kesicioglu, R. Mesiar, Corrigendum to Ordering based on implications [Inform. Sci. 5 276 (2014) 377-386]. INFORM SCIENCES (2014) 415-416.
[194] E. Kindler, Anticipující systémy stále více ve středu zájmu. Automa 10 (2005) 52-52.
[195] E. Kindler, Konference o modelování a simulaci Eurosis v Portugalsku. Automa 1 (2006) 9-9.
[196] E. Kindler, Sedmá konference o anticipujících systémech. Automatizace 10 (2005) 664-664.
[197] E. Kindler, Témeř utajovaná konference o výpočetní technice v Praze. Automa 4 (2006) 61-61.
[198] E. Kindler, P. Berruet, T. Coudert, Component Based Simulation for Reconfiguration Study of Transitic Systems. Simulation 3 (2004) 153-163.
[199] E. Kindler, I. Křivý, Object-oriented Programming Languages as Tools for Formulations of System Abstractions. Aplimat – Journal of Applied Mathematics 2 (2009) 197-207.
[200] E. Kindler, I. Křivý, C. Klimeš, Simulation Aided Anticipation of Intelligent Systems Behavior. International Journal of Information Technologies and System Approach (2012).
[201] E. Kindler, I. Křivý, A. Tanguy, Object-oriented system analysis of anticipatory systems in weak sense. International Journal of Anticipatory Systems 15 (2004) 1-1.
[202] F. Klawonn, V. Novák, The Relation between Inference and Interpolation in the Framework of Fuzzy Systems. Fuzzy Sets and Systems (1996) 331-354.
[203] E.P. Klement, A. Kolesárová, R. Mesiar, A. Stupňanová, A generalization of universal integrals by means of level dependent capacities. KNOWL-BASED SYST (2013) 14-18.
[204] E.P. Klement, A. Kolesárová, R. Mesiar, A. Stupňanová, Lipschitz continuity of discrete universal integrals based on copulas. INT J UNCERTAIN FUZZ (2010) 39-52.
[205] E.P. Klement, R. Mesiar, Open problems posed at the eighth international conference on Fuzzy Set Theory and Applications. Kybernetika 42 (2006) 225-235.
[206] E.P. Klement, R. Mesiar, E. Pap, A universal integral as common frame for Choquet and Sugeno integral. IEEE T FUZZY SYST 18 (2010) 178-187.
[207] C. Klimeš, Expert system utilization for modeling the decision making processes upon indetermination.. Acta Electrotechnica et Informatica 8 (2008) 40-46.
[208] C. Klimeš, Expert system utilization for modeling the decision making processes upon indetermination.. Acta Electrotechnica et Informatica 8 (2008) 40-46.
[209] C. Klimeš, Model of the decision support system under condition of non determination. Acta Electrotechnica et Informatica 12 (2006) 28-37.
[210] C. Klimeš, J. Procházka, New approaches in software development. Acta Electrotechnica et Informatica 2 (2006) 21-26.
[211] A. Kolesárová, R. Mesiar, Lipschitzian De Morgan triplets of fuzzy connectives. INFORM SCIENCES (2010) 3488-3496.
[212] A. Kolesárová, R. Mesiar, On linear and quadratic constructions of aggregation functions. FUZZY SET SYST (2014).
[213] A. Kolesárová, R. Mesiar, 1-Lipschitz power stable aggregation functions. INFORM SCIENCES (2015) 57-63.
[214] A. Kolesárová, R. Mesiar, J. Kalicka, On a new construction of 1-Lipschitz aggregation functions, quasi-copulas and copulas. FUZZY SET SYST (2013) 19-31.
[215] A. Kolesárová, R. Mesiar, J. Montero, Sequential aggregation of bags. INFORM SCIENCES (2015) 305-314.
[216] V. Kreinovich, I. Perfiljeva, A Broad Prospective on Fuzzy Transforms: From Gauging Accuracy of Quantity Estimates to Gauging Accuracy and Resolution of Measuring Physical Fields. NEURAL NETW WORLD 20 (2010) 7-25.
[217] T. Kroupa, Every state on semisimple MV-algebra is integral. Fuzzy Sets and Systems 157 (2006) 2771-2782.
[218] I. Křivý, Anticipation of Local Epidemics Management. Computing Anticipatory Systems 1051 (2008) 223-232.
[219] I. Křivý, Anticipation of Local Epidemics Management. Computing Anticipatory Systems 1051 (2008) 223-232.
[220] I. Křivý, Anticipatory Systems in Population Dynamics. International Journal of Computing Anticipatory Systems 21 (2008) 121-131.
[221] I. Křivý, Anticipatory Systems in Population Dynamics. International Journal of Computing Anticipatory Systems 21 (2008) 121-131.
[222] I. Křivý, Optimization of Fuzzy Models Using Evolutionary Algorithms. Aplimat – Journal of Applied Mathematics 1 (2008) 439-449.
[223] I. Křivý, Optimization of Fuzzy Models Using Evolutionary Algorithms. Aplimat – Journal of Applied Mathematics 1 (2008) 439-449.
[224] I. Křivý, E. Kindler, Synthesis of Two Anticipatory Models in Design and Life-Cycle of Hospitals. International Journal of Anticipatory Systems 18 (2006) 75-85.
[225] I. Křivý, E. Kindler, A. Tanguy, Software for Simulation of Anticipatory Production Systems. International Journal fo Anticipatory Systems 11 (2002) 320-335.
[226] I. Křivý, J. Tvrdík, R. Krpec, Stochastic Algorithms in Nonlinear Regression. COMPUT STAT DATA AN (2000) 277-290.
[227] J. Kupka, On fuzzifications of discrete dynamical systems. INFORM SCIENCES 181 (2011) 2858-2872.
[228] J. Kupka, On fuzzifications of discrete dynamical systems. INFORM SCIENCES 181 (2011) 2858-2872.
[229] J. Kupka, Some chaotic and mixing properties of fuzzified dynamical systems. INFORM SCIENCES 279 (2014) 642-653.
[230] J. Kupka, J.S. Cánovas, On the topological entropy on the space of fuzzy numbers. FUZZY SET SYST 257 (2014) 132-145.
[231] J. Kupka, J.S. Cánovas, Topological entropy of fuzzified dynamical systems. FUZZY SET SYST 165 (2011) 37-49.
[232] J. Kupka, V.J. López, A. Linero, On the $$backslash$omega$-limit sets of product maps. Dynamic Systems and Applications 19 (2010) 667-678.
[233] J. Kupka, H. Román-Flores, Y. Chalco-Cano, G. Nunes-Silva, On turbulent, erratic and other dynamical properties of Zadeh’s extensions. CHAOS SOLITON FRACT 44 (2011) 990-994.
[234] J. Kupka, H. Román-Flores, Y. Chalco-Cano, G. Nunes-Silva, On turbulent, erratic and other dynamical properties of Zadeh’s extensions. CHAOS SOLITON FRACT 44 (2011) 990-994.
[235] J. Kupka, I. Tomanová, Dependencies among attributes given by fuzzy confirmation measures. EXPERT SYST APPL 39 (2012) 7591-7599.
[236] J. Kupka, I. TOMANOVÁ, Some Extensions of Mining of Linguistic Associations. NEURAL NETW WORLD 20 (2010) 27-44.
[237] C. Lopez-Molina, B. De Baets, H. Bustince, E. Induráin, A. Stupňanová, R. Mesiar, Bimigrativity of binary aggregation functions. INFORM SCIENCES (2014) 235-245.
[238] N.M. Madrid, A. Burusco, H. Bustince, J. Fenandez, I. Perfiljeva, Upper bounding overlaps by groupings. FUZZY SET SYST (2014).
[239] S. Massanet, G. Mayor, R. Mesiar, J. Torrens, On fuzzy implications: An axiomatic approach. INT J APPROX REASON 54 (2013) 1471-1482.
[240] A. Matouskova, V. Novák, J. Kulka, Psycholinguistic Research of the Meaning of Linguistic Hedges..
[241] R. Mesiar, J. Li, E. Pap, Superdecomposition integrals. FUZZY SET SYST (2015) 3-11.
[242] R. Mesiar, A. Mesiarová, Fuzzy integrals and linearity. Int. J. Approxim. Reasoning 1 (2008) 353-358.
[243] R. Mesiar, A. Mesiarová, Fuzzy integrals and linearity. Int. J. Approxim. Reasoning 1 (2008) 353-358.
[244] R. Mesiar, A. Mesiarova-Zemankova, The ordered modular averages. IEEE T FUZZY SYST (2011) 42-50.
[245] R. Mesiar, A. Mesiarova-Zemankova, K. Ahmad, Level-dependent Sugeno integral. IEEE Transaction on Fuzzy Systems (2009) 167-172.
[246] R. Mesiar, A. Mesiarova-Zemankova, K. Ahmad, Level-dependent Sugeno integral. IEEE Transaction on Fuzzy Systems (2009) 167-172.
[247] R. Mesiar, A. Mesiarova-Zemankova, Ľ. Valášková, Basic generated universal fuzzy measures. Int. J. Approx. Reasoning 46 (2007) 447-457.
[248] R. Mesiar, A. Mesiarova-Zemankova, Ľ. Valášková, Basic generated universal fuzzy measures. Int. J. Approx. Reasoning 46 (2007) 447-457.
[249] R. Mesiar, V. Novák, Operations Fitting Triangular-Norm-Based Biresiduation. Fuzzy Sets and Systems (1999) 77-84.
[250] R. Mesiar, Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals. FUZZY SET SYST (2009) 58-64.
[251] R. Mesiar, A. Stupňanová, Decomposition integrals. INT J APPROX REASON (2013) 1252-1259.
[252] A. Mesiarova-Zemankova, R. Mesiar, K. Ahmad, The balancing Choquet integral. FUZZY SET SYST (2010) 2243-2255.
[253] L. Mišík, On limit points of subsequences of uniformly distributed sequences. ACTA ARITH 165 (2014) 333-338.
[254] L. Mišík, J. Hančl, J. Tóth, Fuzzy rational approximation of irrationals. Fuzzy sets and systems 160 (2009) 1048-1053.
[255] L. Mišík, J. Tóth, On asymptotic behaviour of universal fuzzy measures. Kybernetika 42 (2006) 379-388.
[256] L. Mišík, J. Tóth, J. Bukor, Dependence of densities on a parameter. Information Sciences 179 (2009) 2903-2911.
[257] J. Močkoř, A category of fuzzy automata. International Journal of General Systems (1991) 73-82.
[258] J. Močkoř, A category of fuzzy automata. General Mathematica Seminar Public (1998) 155-168.
[259] J. Močkoř, A note on approximation theorems. Archivum Mathematicum (1979) 107-118.
[260] J. Močkoř, A realization of d-groups. Czechoslovak Mathematical Journal (1977) 296-312.
[261] J. Močkoř, A realization of groups of divisibility. Commentarii Mathematici Univ. St. Pauli (1977) 61-75.
[262] J. Močkoř, alpha-Cuts and models of fuzzy logic. INT J GEN SYST 41 (2013) 67-78.
[263] J. Močkoř, An extension of approximation theorems. Colloquium Mathematicum (1975) 156-165.
[264] J. Močkoř, Approximation theorems in categories. Commentarii Mathematici Univ. St. Pauli Tokyo (1983) 177-187.
[265] J. Močkoř, Compatible elements in partly ordered groups. International Journal of Mathematics and Mathematical Sciences 24 (2005) 4041-4048.
[266] J. Močkoř, Complete subobjects of fuzzy sets over MV-algebras. CZECH MATH J 54 (2004) 379-392.
[267] J. Močkoř, Completions of cut systems in Q-sets. SOFT COMPUT 18 (2014) 839-847.
[268] J. Močkoř, Construction of fuzzy logic models in categories of sets with similarities. INT J GEN SYST 39 (2010) 217-233.
[269] J. Močkoř, Construction of po-groups with quasi-divisor theory. Czechoslovak Mathematical Journal 125 (2000) 197-207.
[270] J. Močkoř, Covariant functors in categories of fuzzy sets over MV-algebras. Advances in Fuzzy Sets and Systems 1 (2006) 83-109.
[271] J. Močkoř, Cut systems in sets with similarity relations. FUZZY SET SYST (2010) 3127-3140.
[272] J. Močkoř, Divisor class group and theory of quasi-divisors. PUBL MATH-DEBRECEN (2000) 507-521.
[273] J. Močkoř, Example generating in quasi-divisor theory. General Mathematica Seminar Public (1998) 145-154.
[274] J. Močkoř, Extension principles for closure operators on fuzzy sets and cuts. FUZZY SET SYST (2014).
[275] J. Močkoř, Extensional subobjects in categories of Omega-fuzzy sets. Czechoslovak Mathematical Journal 57 (2007) 631-645.
[276] J. Močkoř, Fuzzy and non-deterministic automata. SOFT COMPUT (1999) 221-226.
[277] J. Močkoř, Fuzzy logic models in a category of fuzzy relations. SOFT COMPUT 13 (2009) 591-596.
[278] J. Močkoř, Fuzzy models with locally linear output functions. Schriftenreihe des Fachbereichs Mathematik (1994) 1-15.
[279] J. Močkoř, Fuzzy sets and cut systems in a category of sets with similarity relations. SOFT COMPUT 16 (2012) 101-107.
[280] J. Močkoř, General fuzzy decision systems. Acta Mathematica et Informatica Universitatis Ostraviensis (1997) 81-95.
[281] J. Močkoř, Isomorphisms and functors of fuzzy sets and cut systems. SOFT COMPUT 18 (2014) 1237-1245.
[282] J. Močkoř, Models of fuzzy logic in a category of sets with similarity relations. International journal of innovative computing, Information and control (2008) 1063-1068.
[283] J. Močkoř, Models of fuzzy logic in a category of sets with similarity relations. International journal of innovative computing, Information and control (2008) 1063-1068.
[284] J. Močkoř, Ordered Groups with greatest common divisor theory. International Journal of Mathematics and Mathematical Sciences 24 (2000) 469-479.
[285] J. Močkoř, Prufer d-groups. Czechoslovak Mathematical Journal (1978) 127-139.
[286] J. Močkoř, Semigroup homomorphisms and fuzzy automata. SOFT COMPUT (2002) 422-427.
[287] J. Močkoř, Semi-valuations and d groups,. Czechoslovak Mathematical Journal (1982) 77-84.
[288] J. Močkoř, Some categorical aspects of fuzzy automata. Acta Facultatis Rerum Naturalium Universitatis Ostraviensis (1992) 15-25.
[289] J. Močkoř, The completion of Prufer domains. Proceedings of American Mathematical Society (1977) 1-10.
[290] J. Močkoř, The completion of Prufer rings. Colloquium Mathematicum Societe Janos Bolyai (1978) 863-876.
[291] J. Močkoř, The completion of valued fields and nonstandard models. Commentarii Mathematici Univ. St. Pauli (1981) 1-16.
[292] J. Močkoř, The group of divisibility of Z. Archivum Mathematicum (1984) 31-38.
[293] J. Močkoř, Topological groups of divisibility. Colloquium Mathematicum (1978) 301-311.
[294] J. Močkoř, Topological characterization of ordered groups with quasi-divisor theory. CZECH MATH J 3 (2002) 595-607.
[295] J. Močkoř, t-valuations and the theory of quasi-divisors. J PURE APPL ALGEBRA 1 (1997) 51-65.
[296] J. Močkoř, J. Alajbegovic, Valuations on multirings. Commentarii mathematici Univ. St. Pauli Tokyo (1985) 201-227.
[297] J. Močkoř, A. Geroldinger, Quasi divisor theories and generalizations of Krull domains. Journal of Pure and Applied Algebra (1995) 289-311.
[298] J. Močkoř, A. Kontolatou, Divisor class groups of ordered subgroups. Acta mathematica et Informatika Univ. Ostraviensis (1993) 37-46.
[299] J. Močkoř, A. Kontolatou, Groups with quasi-divisors theory. Commentarii Mathematici Univ. St. Pauli Tokyo (1993) 23-36.
[300] J. Močkoř, A. Kontolatou, Quasi-divisors theory of partly ordered groups. Grazer Mathematischer Berichte (1992) 81-98.
[301] J. Močkoř, A. Kontolatou, Some remarks on Lorenzen r-group of partly ordered groups. CZECH MATH J 46 (1996) 537-552.
[302] J. Močkoř, A. Kontolatou, A. Kalapodi, Some properties of Lorenzen ideal systems. Archivum Mathematicum (2000) 289-295.
[303] J. Močkoř, R. Smolíková, Category of extended fuzzy automata. Acta Mathematica at Informatica Universitatis Ostraviensis (1996) 47-56.
[304] J. Močkoř, R. Smolíková, Fuzzy automata. Tatra Mountains Mathematical Publications (1997) 41-50.
[305] J. Močkoř, R. Smolíková, General Fuzzy Decision Systems. Acta Mathematica at Informatica Universitatis Ostraviensis (1997) 81-95.
[306] J. Močkoř, R. Smolíková, Output functions of fuzzy automata. Acta Mathematica et Informatica (1998) 47-56.
[307] P. Murinová, Fuzzy logic with evaluated syntax extended by product. Journal of Electrical Engeneering 12 (2003) 85-88.
[308] P. Murinová, Model theory in fuzzy logic with evaluated syntax extended by product. Journal of electrical engeneering 12 (2003) 86-89.
[309] P. Murinová, The Omitting Types in predicate fuzzy logics. Journal of Elektrical Engineering (2004) 87-90.
[310] P. Murinová, V. Novák, A Formal Theory of Generalized Intermediate Syllogisms. FUZZY SET SYST 186 (2012) 47-80.
[311] P. Murinová, V. Novák, Analysis of generalized square of opposition with intermediate quantifiers. FUZZY SET SYST (2014) 89-113.
[312] P. Murinová, V. Novák, Omitting Types in Fuzzy Logic with Evaluated Syntax. Mathematical logic quarterly 52 (2006) 259-268.
[313] P. Murinová, V. Novák, The structure of generalized intermediate syllogisms. FUZZY SET SYST 247 (2014) 18-37.
[314] L. Nosková, Extreme solutions of system of fuzzy relation equations with triangular fuzzy sets. Journal of Electrical Engineering 57 (2006) 47-50.
[315] L. Nosková, System of fuzzy relation equations with infimum – composition:solvability and solutions. Journal of Electrical Engineering 12 (2005) 69-72.
[316] V. Novák, A Comprehensive Theory of Trichotomous Evaluative Linguistic Expressions. Fuzzy Sets and Systems 159 (2008) 2939-2969.
[317] V. Novák, A Comprehensive Theory of Trichotomous Evaluative Linguistic Expressions. Fuzzy Sets and Systems 159 (2008) 2939-2969.
[318] V. Novák, A Formal Theory of Intermediate Quantifiers. Fuzzy Sets and Systems 159 (2008) 1229-1246.
[319] V. Novák, A Formal Theory of Intermediate Quantifiers. Fuzzy Sets and Systems 159 (2008) 1229-1246.
[320] V. Novák, Antonyms and Linguistic Quantifiers in Fuzzy Logic. Fuzzy Sets and Systems (2001) 335-351.
[321] V. Novák, Are Fuzzy Sets a Reasonable Tool for Modeling Vague Phenomena?. Fuzzy Sets and Systems 156 (2005) 341-348.
[322] V. Novák, Descriptions in Full Fuzzy Type Theory. Neural Network World (2003) 559-569.
[323] V. Novák, Elements of Model Theory in Higher Order Fuzzy Logic. FUZZY SET SYST 205 (2012) 101-115.
[324] V. Novák, EQ-algebra-based Fuzzy Type Theory and Its Extensions. Logic Journal of the IGPL (2011) 512-542.
[325] V. Novák, EQ-algebra-based Fuzzy Type Theory and Its Extensions. Logic Journal of the IGPL (2011) 512-542.
[326] V. Novák, Fuzzy Control from the Point of View of Fuzzy Logic. Fuzzy Sets and Systems (1994) 159-173.
[327] V. Novák, Fuzzy Functions in Fuzzy Logic with Fuzzy Equality. Acta Mathematica et Informatica Universitatis Ostraviensis (2001) 59-66.
[328] V. Novák, Fuzzy logic in narrow and broader sense – state of the art,. Tatra Mountains (1997) 131-150.
[329] V. Novák, Fuzzy logic with countable evaluated syntax revisited. Fuzzy Sets and Systems (2007) 929-936.
[330] V. Novák, Intensional Theory of Granular Computing. Soft Computing 8 (2004) 281-290.
[331] V. Novák, Joint consistency of fuzzy theories. Mathematical Logic Quaterly 48 (2002) 563-573.
[332] V. Novák, Linguistically Oriented Fuzzy Logic Controller and Its Design. Int. J. of Approximate Reasoning (1995) 263-277.
[333] V. Novák, On functions in fuzzy logic with evaluated syntax. Neural network World (2000) 869-875.
[334] V. Novák, On fuzzy equality and approximation in fuzzy logic. Soft Computing (2004) 668-675.
[335] V. Novák, On Fuzzy Type Theory. Fuzzy Sets and Systems 149 (2005) 235-273.
[336] V. Novák, ON MODELING WITH WORDS. INT J GEN SYST 42 (2013) 21-40.
[337] V. Novák, On the Hilbert–Ackermann Theorem in Fuzzy Logic. Acta Mathematica et Informatica Universitatis Ostraviensis (1996) 57-74.
[338] V. Novák, Open Theories, Consistency and Related Results in Fuzzy Logic. Int. Journal of Approximate Reasoning (1998) 191-200.
[339] V. Novák, Paradigm, Formal Properties and Limits of Fuzzy Logic. Int. J. of General Systems (1996) 377-405.
[340] V. Novák, Reasoning about mathematical fuzzy logic and its future. FUZZY SET SYST 192 (2012) 25-44.
[341] V. Novák, Towards formal theory of soft computing. Soft Computing (1998) 4-6.
[342] V. Novák, Which logic is the real fuzzy logic?. Fuzzy Sets and Systems 157 (2006) 635-641.
[343] V. Novák, B. Debaets, EQ-algebras. Fuzzy Sets and Systems 160 (2009) 2956-2978.
[344] V. Novák, B. Debaets, EQ-algebras. Fuzzy Sets and Systems 160 (2009) 2956-2978.
[345] V. Novák, A. Dvořák, Formalization of Commonsense Reasoning in Fuzzy Logic in Broader Sense. Applied and Computational Mathematics 10 (2011) 106-121.
[346] V. Novák, H. Habiballa, P. Hurtík, M. Štěpnička, Recognition of Damaged Letters Based on Mathematical Fuzzy Logic Analysis. Journal of Applied Logic (2015) 94-104.
[347] V. Novák, P. Hájek, The Sorites paradox and fuzzy logic. International Journal of General Systems 32 (2003) 373-383.
[348] V. Novák, J. Ivánek, Opportunity for the Economic Science. Prague Economic Papers (1996) 278-281.
[349] V. Novák, J. Ivánek, VIIth IFSA World Congress on Fuzzy Logic: Opportunity for the Economic Science. Prague Economic Papers (1996) 278-281.
[350] V. Novák, S. Lehmke, Logical Structure of Fuzzy IF-THEN Rules. Fuzzy Sets and Systems 157 (2006) 2003-2029.
[351] V. Novák, I. Perfilieva, On the Semantics of Perception-Based Fuzzy Logic Deduction. International Journal of Intelligent Systems 19 (2004) 1007-1031.
[352] V. Novák, I. Perfilieva, A. Dvořák, Q. Chen, Q. Wei, P. Yan, Mining pure linguistic associations from numerical data. INT J APPROX REASON 48 (2008) 4-22.
[353] V. Novák, I. Perfilieva, A. Dvořák, Q. Chen, Q. Wei, P. Yan, Mining pure linguistic associations from numerical data. INT J APPROX REASON 48 (2008) 4-22.
[354] V. Novák, I. Perfilieva, H.T. Nguyen, V. Kreinovich, Research on advanced soft computing and its applications. Soft Computing 8 (2004) 239-246.
[355] V. Novák, M. Štěpnička, A. Dvořák, I. Perfilieva, V. Pavliska, L. Vavříčková, Analysis of Seasonal Time Series Using Fuzzy Approach. INT J GEN SYST 39 (2010) 305-328.
[356] V. Novák, A. Zorat, M. Fedrizzi, A simple procedure for pattern prerecognition based on fuzzy logic analysis. J. of Uncertainty, Fuzziness and Knowledge-Based systems (1997) 31-45.
[357] Y. Ouyang, R. Mesiar, On the Chebyshev type inequality for seminormed fuzzy integral. APPL MATH LETT (2009) 1810-1815.
[358] Y. Ouyang, R. Mesiar, SUGENO INTEGRAL AND THE COMONOTONE COMMUTING PROPERTY. INT J UNCERTAIN FUZZ 2009-08-15 (2009) 465-480.
[359] Y. Ouyang, R. Mesiar, SUGENO INTEGRAL AND THE COMONOTONE COMMUTING PROPERTY. INT J UNCERTAIN FUZZ 2009-08-15 (2009) 465-480.
[360] Y. Ouyang, R. Mesiar, H. Agahi, An inequality related to Minkowski type for Sugeno integrals. INFORM SCIENCES (2010) 2793-2801.
[361] Y. Ouyang, R. Mesiar, L. Jun, On the comonotonic-*-property for Sugeno integral. APPL MATH COMPUT 211 (2009) 450-458.
[362] Y. Ouyang, R. Mesiar, L. Jun, On the comonotonic-*-property for Sugeno integral. APPL MATH COMPUT 211 (2009) 450-458.
[363] E. Palmeira, B. Bedregal, R. Mesiar, J. Fernandez, A new way to extend t-norms, t-conorms and negations. FUZZY SET SYST (2014) 1-21.
[364] D. Paternain, H. Bustince, J. Fernandez, J. Sanz, M. Baczynski, G. Beliakov, R. Mesiar, Strong Fuzzy Subsethood Measures and Strong Equalities Via Implication Functions. J MULT-VALUED LOG S (2014) 347-371.
[365] D. Paternain, J. Fernandez, H. Bustince, R. Mesiar, G. Beliakov, Construction of image reduction operators using averaging aggregation functions. FUZZY SET SYST 261 (2015) 87-111.
[366] I. Perfilieva, Approximation of Continuous Functions by Functions Represented by Fuzzy Logic Formulas. Mathematical Modeling and Optimal Control (2000) 144-151.
[367] I. Perfilieva, Functional system of BL-algebra with infinite formulas. International Journal of Many-Valued Logic 12 (2006) 183-200.
[368] I. Perfilieva, Functions Represented by BL-Algebra Formulas: Characterization and Approximate Representation. Soft Computing 9 (2005) 910-918.
[369] I. Perfilieva, Fuzzy function as an approximate solution to a system of fuzzy relation equations. Fuzzy Sets and Systems 147 (2004) 363-383.
[370] I. Perfilieva, Fuzzy Relations, Functions, and Their Representation by Formulas. Neural Network World 12 (2000) 877-890.
[371] I. Perfilieva, Fuzzy Transforms in Image Compression and Fusion. Acta Matematica Universitatis Ostraviensis 15 (2007) 27-37.
[372] I. Perfilieva, Fuzzy Transforms in Image Compression and Fusion. Acta Matematica Universitatis Ostraviensis 15 (2007) 27-37.
[373] I. Perfilieva, Fuzzy Transforms: Theory and Applications. Fuzzy Sets and Systems 157 (2006) 993-1023.
[374] I. Perfilieva, Logical Approximation. Soft Computing 7 (2002) 73-78.
[375] I. Perfilieva, Logical Foundations of Rule-Based Systems. Fuzzy Sets and Systems 157 (2006) 615-621.
[376] I. Perfilieva, Neural Nets and Normal Forms from Fuzzy Logic Point of View. Neural Network World 11 (2001) 627-638.
[377] I. Perfilieva, Normal Forms for Fuzzy logic Functions and Their Approximation Ability. Fuzzy Sets and Systems 124 (2001) 371-384.
[378] I. Perfilieva, Normal forms in BL and LP algebras of functions. Soft Computing 8 (2004) 291-298.
[379] I. Perfilieva, Normal Forms in BL-algebra of functions and their contribution to universal approximation. Fuzzy Sets and Systems 143 (2004) 111-127.
[380] I. Perfilieva, Solvability of a System of Fuzzy Relation Equations: Easy to Check Conditions. Neural Network World 13 (2003) 571-580.
[381] I. Perfilieva, B. De Baets, Fuzzy Transform of Monotonous Functions with Applications to Image Processing. Information Sciences 180 (2010) 3304-3315.
[382] I. Perfilieva, G. Gallo, M. Spagnuolo, S. Spinello, Geographical Data Analysis via Mountain Functions. International Journal of Intelligent Systems 4 (1999) 359-374.
[383] I. Perfilieva, S. Gottwald, Solvability and Approximate Solvability of Fuzzy Relation Equations. Int. Journal of General Systems 32 (2003) 361-372.
[384] I. Perfilieva, V. Kreinovich, A New Universal Approximation Result For Fuzzy Systems, Which Reflects CNF–DNF Duality. International Journal of Intelligent Systems 12 (2002) 1121-1130.
[385] I. Perfilieva, V. Kreinovich, Fuzzy transforms of higher order approximate derivatives: A theorem. Fuzzy Sets and Systems 180 (2011) 55-68.
[386] I. Perfilieva, V. Kreinovich, Towards an (Even More) Natural Probabilistic Interpretation of Fuzzy Transforms (and of Fuzzy Modeling). Advances in Fuzzy Systems 2011 (2011) 33-41.
[387] I. Perfilieva, V. Kreinovich, Towards an (Even More) Natural Probabilistic Interpretation of Fuzzy Transforms (and of Fuzzy Modeling). Advances in Fuzzy Systems 2011 (2011) 33-41.
[388] I. Perfilieva, S. Lehmke, Correct Models of Fuzzy If–Then Rules are Continuous. Fuzzy Sets and Systems 157 (2006) 3188-3197.
[389] I. Perfilieva, L. Nosková, System of fuzzy relation equations with inf-> composition: complete set of solutions. FUZZY SET SYST 159 (2008) 2256-2271.
[390] I. Perfilieva, L. Nosková, System of fuzzy relation equations with inf-> composition: complete set of solutions. FUZZY SET SYST 159 (2008) 2256-2271.
[391] I. Perfilieva, V. Novák, System of fuzzy relation equations as a continuous model of if-then rules. Information Sciences 177 (2007) 3218-3227.
[392] I. Perfilieva, V. Novák, A. Dvořák, Fuzzy transform in the analysis of data. INT J APPROX REASON 48 (2008) 36-46.
[393] I. Perfilieva, V. Novák, A. Dvořák, Fuzzy transform in the analysis of data. INT J APPROX REASON 48 (2008) 36-46.
[394] I. Perfilieva, H. Prade, D. Dubois, L. Godo, F. Esteva, P. Hoďáková, Interpolation of Fuzzy Data. Analytical Approach and Overview. Fuzzy Sets and Systems 192 (2012) 134-158.
[395] I. Perfilieva, A. Tonis, Compatibility of Systems of Fuzzy Relation Equations. Int. Journal of General Systems 29 (2000) 511-528.
[396] I. Perfilieva, A. Tonis, Funkcionalnaja Sistěma Beskoněčnoznačnogo propozicionalnogo isčisljenija. Discrete Analysis and Operation Research (Diskretnij analiz i issledovanie operatsii) 7 (2000) 75-85.
[397] I. Perfilieva, N. Yarushkina, T. Afanasieva, A. Romanov, Time Series Analysis using Soft Computing Methods. INT J GEN SYST 42 (2013) 687-705.
[398] I. Perfiljeva, Finitary Solvability Conditions for Systems of Fuzzy Relation Equations. INFORM SCIENCES (2013) 29-43.
[399] I. Perfiljeva, F-TRANSFORMS — WHERE FUZZY AND CLASSICAL MATHEMATICS MEET. Applied and Computational Mathematics 10 (2011) 122-132.
[400] I. Perfiljeva, F-TRANSFORMS — WHERE FUZZY AND CLASSICAL MATHEMATICS MEET. Applied and Computational Mathematics 10 (2011) 122-132.
[401] I. Perfiljeva, P. Hurtík, S. Sessa, F. Di Martino, A Colour Image Reduction Based on Fuzzy Transforms. INFORM SCIENCES 266 (2014) 101-111.
[402] I. Perfiljeva, A. Khastan, Z. Alijani, A new fuzzy approximation method to Cauchy problems by fuzzy transform. FUZZY SET SYST (2014).
[403] I. Perfiljeva, M. WRUBLOVÁ, P. Hoďáková, Fuzzy Interpolation according to Fuzzy and Classical Conditions. Acta Polytechnica Hungarica 7 (2010) 39-55.
[404] I. Perfiljeva, M. WRUBLOVÁ, P. Hoďáková, Fuzzy Interpolation according to Fuzzy and Classical Conditions. Acta Polytechnica Hungarica 7 (2011) 39-55.
[405] I. Perfiljeva, M. WRUBLOVÁ, P. Hoďáková, Fuzzy Interpolation according to Fuzzy and Classical Conditions. Acta Polytechnica Hungarica 7 (2011) 39-55.
[406] R. Perzina, J. Ramík, Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints. INT J INNOV COMPUT I 9 (2013) 4565-4582.
[407] M. Petrík, R. Mesiar, On the structure of uninorms with idempotent and involutive underlying t-norms and t-conorms. FUZZY SET SYST (2014) 22-38.
[408] D. Plšková, Application of Fuzzy Control for Reservoir during Flood Passage. Journal of Eelectrical Engineering 12 (2007) 80-82.
[409] D. Plšková, Fuzzy Transform in Geological Applications. Journal of Electrical Engineering 12 (2006) 43-46.
[410] D. Plšková, Fuzzy Transform of a Function on the Basis of Triangulation. Journal of Electrical Engineering 12 (2005) 98-100.
[411] R. Poláková, J. Tvrdík, A Combined Approach to Adaptive Differential Evolution. NEURAL NETW WORLD 23 (2013) 3-15.
[412] O. Polakovič, Neural networks and their application in ECG. Journal of Electrical Engineering 12 (2005) 62-64.
[413] O. Polakovič, R. Valášek, Some Methods of Robot Movement and their Comparison. Journal of Electrical Engineering 12 (2006) 30-35.
[414] J. Ramík, Duality in fuzzy linear programming with posibility and necessity relations. Fuzzy Sets and System (2006) 1283-1302.
[415] J. Ramík, Fuzzy goal programming. Fuzzy Sets and Systems (2000) 81-86.
[416] J. Ramík, Isomorphisms Between Fuzzy Pairwise Comparison Matrices. Fuzzy optimization and decision making (2014) 1-11.
[417] J. Ramík, M. Inuiguchi, Possibilistic linear programming: a brief review of fuzzy mathematical programming and comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems (2000) 3-28.
[418] J. Ramík, M. Inuiguchi, T. Tanino, M. Vlach, Satisficing solutions and duality in interval and fuzzy linear programming. Fuzzy Sets and Systems (2003) 151-177.
[419] J. Ramík, R. Perzina, Solving Decision Problems with Dependent Criteria by New Fuzzy Multicriteria Method in Excel. Journal of Business&Management 3 (2014) 1-16.
[420] J. Ramík, R. Perzina, Timetabling Problem with Fuzzy Constraints: A Self-Learning Genetic Algorithm. International Journal of Engineering and Innovative Technology (IJEIT) 3 (2013) 105-113.
[421] J. Ramík, M. Vlach, Concept of generalized concavity based on triangular norms. Journal of Statistics and Management Systems (2003) 86-106.
[422] J. Ramík, M. Vlach, Fuzzy Mathematical Programming: A Unified Approach Based on Fuzzy Relations. Fuzzy Optimatization and Decision Making (2002) 256-266.
[423] J. Ramík, M. Vlach, Measuring Consistency and Inconsistency of Pair Comparison Systems. KYBERNETIKA 49 (2013) 465-486.
[424] J. Ramík, M. Vlach, Pareto-optimality of compromise decisions. Fuzzy Sets and Systems (2002) 119-127.
[425] E. Sainio, E. Turunen, R. Mesiar, A characterization of fuzzy implications generated by generalized quantifiers. Fuzzy Sets and Systems 159 (2008) 491-499.
[426] E. Sainio, E. Turunen, R. Mesiar, A characterization of fuzzy implications generated by generalized quantifiers. Fuzzy Sets and Systems 159 (2008) 491-499.
[427] S. Saminger, E.P. Klement, R. Mesiar, On extensions of triangular norms on bounded lattices. INDAGAT MATH NEW SER 19 (2008) 135-150.
[428] S. Saminger, E.P. Klement, R. Mesiar, On extensions of triangular norms on bounded lattices. INDAGAT MATH NEW SER 19 (2008) 135-150.
[429] R. Smolíková, Aggregation operators for selection problems. Fuzzy Sets and Systems (2002) 23-34.
[430] I. Štajner-Papuga, T. Grbic, M. Daňková, Pseudo-Riemann-Stieltjes integral. INFORM SCIENCES 179 (2009) 2923-2933.
[431] I. Štajner-Papuga, T. Grbic, M. Daňková, Riemann-Stieltjes type integral based on generated pseudo-operations. Novi Sad Journal of Mathematics 36 (2006) 111-124.
[432] M. Štěpnička, Fuzzy Transformation and Its Applications in A/D Converter. Journal of Electrical Engineering 12 (2003) 72-75.
[433] M. Štěpnička, Inference Mechanisms, Systems of Fuzzy Relational Equations and the Additive Interpretations of Rule Bases. Journal of Electrical Engineering 12 (2006) 78-81.
[434] M. Štěpnička, U. Bodenhofer, M. Daňková, V. Novák, Continuity Issues of the Implicational Interpretation of Fuzzy Rules. FUZZY SET SYST 161 (2010) 1959-1972.
[435] M. Štěpnička, P. Cortez, J.P. Donate, L. Štěpničková, Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations. EXPERT SYST APPL 40 (2013) 1981-1992.
[436] M. Štěpnička, M. Daňková, On Fuzzy Normal Forms. Journal of Electrical Engineering 7/s (2007) 63-66.
[437] M. Štěpnička, M. Daňková, On Fuzzy Normal Forms. Journal of Electrical Engineering 7/s (2007) 63-66.
[438] M. Štěpnička, B. De Baets, Implication-based models of monotone fuzzy rule bases. FUZZY SET SYST 232 (2013) 134-155.
[439] M. Štěpnička, B. De Baets, Interpolativity of at-least and at-most models of monotone single-input/single-output fuzzy rule bases. INFORM SCIENCES 234 (2013) 16-28.
[440] M. Štěpnička, B. De Baets, L. NOSKOVÁ, Arithmetic Fuzzy Models. IEEE T FUZZY SYST 18 (2010) 1058-1069.
[441] M. Štěpnička, A. Dvořák, V. Pavliska, L. Vavříčková, A linguistic approach to time series modeling with help of the F-transform. FUZZY SET SYST 180 (2011) 164-184.
[442] M. Štěpnička, B. Jayaram, On the suitability of the Bandler-Kohout subproduct as an inference mechanism. IEEE T FUZZY SYST 18 (2010) 285-298.
[443] M. Štěpnička, O. Polakovič, A neural network approach to the fuzzy transform. FUZZY SET SYST 160 (2009) 1037-1047.
[444] M. Štěpnička, R. Valášek, Dynamic Robot Control Based on Fuzzy Approximation. Journal of Electrical Engineering 12 (2005) 17-20.
[445] M. Štěpnička, R. Valášek, Fuzzy Transforms and Their Application to Wave Equation. Journal of Electrical Engineering 12 (2004) 7-10.
[446] J. Tóth, F. Filip, On estimations of dispersions of certain dense block sequences. Tatra Mountains Mathematical Publications 31 (2005) 51-60.
[447] J. Tóth, L. Mišík, F. Filip, On ratio block sequences with extreme distribution function. Mathematica Slovaca (2009) 275-282.
[448] J. Tóth, L. Mišík, F. Filip, On ratio block sequences with extreme distribution function. Mathematica Slovaca (2009) 275-282.
[449] J. Tvrdík, Adaptation in Differential Evolution: A Numerical Comparison. APPL SOFT COMPUT 9 (2009) 1149-1155.
[450] J. Tvrdík, Adaptation in Differential Evolution: A Numerical Comparison. APPL SOFT COMPUT 9 (2009) 1149-1155.
[451] J. Tvrdík, Differential Evolution with Competitive Setting of its Control Parameters. TASK Quarterly 11 (2007) 169-179.
[452] J. Tvrdík, Differential Evolution with Competitive Setting of its Control Parameters. TASK Quarterly 11 (2007) 169-179.
[453] J. Tvrdík, Evoluční algoritmy a adaptace jejich řídicích parametrů. Automatizace 50 (2007) 453-457.
[454] J. Tvrdík, Evoluční algoritmy a adaptace jejich řídicích parametrů. Automatizace 50 (2007) 453-457.
[455] J. Tvrdík, Self-adaptive Variants of Differential Evolution with Exponential Crossover. Analele Universitatii de Vest, Timisoara.Seria Matematica-Informatica. 47 (2009) 151-168.
[456] J. Tvrdík, I. Křivý, L. Mišík, Adaptive Population-based Search: Application to Estimation of Nonlinear Regression Parameters. COMPUT STAT DATA AN 52 (2007) 713-724.
[457] J. Tvrdík, I. Křivý, L. Mišík, Adaptive Population-based Search: Application to Estimation of Nonlinear Regression Parameters. COMPUT STAT DATA AN 52 (2007) 713-724.
[458] M. Vajgl, I. Perfiljeva, P. Hoďáková, Advanced F-Transform-Based Image Fusion. Advances in Fuzzy Systems (2012) 1-9.
[459] T. Vetterlein, M. Štěpnička, Completing Fuzzy If-then Rule Bases by Means of Smoothing Splines. INT J UNCERTAIN FUZZ 4 (2006) 235-244.
[460] Q. Zhang, R. Mesiar, L. Jun, P. Struk, Generalized Lebesgue integral. INT J APPROX REASON (2011) 427-443.
[461] Q. Zhang, R. Mesiar, L. Jun, P. Struk, Generalized Lebesgue integral. INT J APPROX REASON (2011) 427-443.
[462] J. Žáček, F. Huňka, Reusable object-oriented model. e-Informatica Software Engineering Journal 7 (2013) 35-44.
[463] A. Žák, M. Burda, M. Vecka, M. Zeman, E. Tvrznická, B. Staňková, Fatty Acid Composition Indicates the Two Types of Metabolic Syndrome Independently on Clinical and Laboratory Parameters. Physiological Research 63 (2014) 375-385.
Conference proceedings:
[1] R. Bělohlávek, Algorithms for fuzzy concept lattices. In: Proc. Fourth Int. Conf. on Recent Advances in Soft Computing, Nottingham, United Kingdom, 2002, pp. 67-68.
[2] R. Bělohlávek, Cutlike semantics for fuzzy logic. In: Proc. Fourth Ing. Cong. on Recent Advances in Soft Computing, Nottingham, United Kingdom, 2002, pp. 135-136.
[3] R. Bělohlávek, Fuzzy closure operators induced by similarity. In: Heidelberg, 2003, pp. 71-78.
[4] R. Bělohlávek, Koncepruální svazy a formální konceptuální analýza. In: 2004, pp. 66-84.
[5] R. Bělohlávek, Lattice type fuzzy order and clocure operators in fuzzy ordered sets. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, 2001, pp. 2281-2286.
[6] R. Bělohlávek, Logical precision in conceptual structures. In: Genova, Italy, 1999, pp. 619-623.
[7] R. Bělohlávek, Model theory for fuzzy logic in the foundations of soft computing. In: Proc. IEEE Systems, Man and Cybernetics 2000 Conference, Nashville, Tennessee, USA, 2000, pp. 3635-3640.
[8] R. Bělohlávek, Multilayer neural networks with fuzzy signals – adaptation and some remarks. In: Proc. VIIth IFSA World Congress Prague, Praha, 1977, pp. 537-542.
[9] R. Bělohlávek, V. Novák, Learning Linguistic Context for Linguistic Oriented Fuzzy Control. In: Proc. Int. Conference FUZZ-IEEE’97, Barcelona, 1997, pp. 1167-1168.
[10] R. Bělohlávek, V. Sklenář, J. Zacpal, Concept lattices constrained by attribute dependencies. In: Proc. DATESO 2004, CEUR Workshop Proceedings, 2004, pp. 63-73.
[11] R. Bělohlávek, V. Sklenář, J. Zacpal, Expressive capability of AD-formulas in constraning concept lattices. In: 2004, pp. 201-210.
[12] R. Bělohlávek, V. Snášel, Podobnost a její modelování. In: 2004, pp. 309-316.
[13] R. Bělohlávek, V. Vychodil, Algebras with fuzzy equalities. In: Istanbul, Turkey, 2003, pp. 1-4.
[14] P. Berruet, T. Coudert, E. Kindler, Component-Based Simulation – a View From Transitic System Models. In: Proc. ASIS’04 – Advanced Simulation of Systems, Ostrava, 2004, pp. 259-264.
[15] P. Berruet, T. Coudert, E. Kindler, Conveyors with rollers as anticipatory systems: Their simulation models. In: Proc. CASYS 2003 / Sixth International Conference, Melville, USA, 2004, pp. 582-592.
[16] P. Berruet, T. Coudert, E. Kindler, Vers une simulation reflective en ingenerie des systemes transitiques. In: Proc. MOSIM’04 – 5me Conference francophone de Mode;lisation et Simulation, Nantes, 2004, pp. 149-156.
[17] J. Blažek, H. Habiballa, V. Pavliska, Vybrané heuristiky pro globální optimalizaci a jejich implementace v MATLABu. In: Proc. Technical Computing Prague 2005, Praha, 2005, pp. 19-19.
[18] U. Bodenhofer, M. Daňková, M. Štěpnička, V. Novák, A Plea for the Usefulness of the Deductive Interpretation of Fuzzy Rules in Engineering Applications. In: Proc. FUZZ-IEEE, London, 2007, pp. 1572-1577.
[19] M. Burda, M. Štěpnička, L. Štěpničková, Fuzzy Rule-Based Ensemble for Time Series Prediction: Progresses with Associations Mining. In: Proc. Soft Methods in Probability and Statistics, Heidelberg, 2015, pp. 261-271.
[20] H. Bustince, J. Fernandez, D. Paternain, M. Baczynski, G. Beliakov, R. Mesiar, J.A. Sanz, Construction of strong equality index from implication operators. In: Proc. FLINS2012, New Jersey, 2012, pp. 769-774.
[21] H. Bustince, J. Fernandez, D. Paternain, M. Baczynski, G. Beliakov, R. Mesiar, J.A. Sanz, Construction of strong equality index from implication operators. In: Proc. FLINS2012, New Jersey, 2012, pp. 769-774.
[22] P. Cintula, E.P. Klement, R. Mesiar, M. Navara, Varieties of algebras based on strict t-norms and involutive negations. In: Proc. 8th FSTA, Liptovsky Mikulas, 2006, pp. 8-9.
[23] M. Daňková, Extensionality and Continuity. In: Proc. EUSFLAT 2003, Zittau, 2003, pp. 624-629.
[24] M. Daňková, Extensionality as a basis for fuzzy approximation. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 34-34.
[25] M. Daňková, Fuzzy Functions and Their Representations in Fuzzy Class Theory. In: Proc. NCMPL 2011, Prague, 2011, pp. 52-57.
[26] M. Daňková, Generalized Implicative Model of a Fuzzy Rule Base and its Properties. In: Proc. Cognitive 2011, 2011, pp. 116-121.
[27] M. Daňková, Generalized Implicative Model of a Fuzzy Rule Base and its Properties. In: Proc. Cognitive 2011, 2011, pp. 116-121.
[28] M. Daňková, Graded fuzzy rules. In: Proc. IFSA 2007, Heidelberg, 2007, pp. 481-490.
[29] M. Daňková, Graded fuzzy rules for functional dependencies: Normal form based formalization. In: Proc. IFSA 2011, Surabaya, 2011, pp. 2121-2126.
[30] M. Daňková, Graded fuzzy rules for functional dependencies: Normal form based formalization. In: Proc. IFSA 2011, Surabaya, 2011, pp. 2121-2126.
[31] M. Daňková, Integral based aggregation operators in the theory of fuzzy approximation. In: Hagenberg, 2006, pp. 23-31.
[32] M. Daňková, Normal forms based fuzzy systems. In: Proc. Joint EUSFLAT – LFA 2005, Barcelona, 2005, pp. 633-638.
[33] M. Daňková, REPRESENTATION THEOREM FOR FUZZY FUNCTIONS — Graded form. In: Proc. INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION 2010, Portugal, 2010, pp. 56-64.
[34] M. Daňková, B. Bede, Aggregation Operators Based Fuzzy Approximations. In: Proc. INES2006, Londýn, 2006, pp. 154-159.
[35] M. Daňková, B. Bede, Aggregation Operators Based Fuzzy Approximations. In: Proc. INES2006, Londýn, 2006, pp. 154-159.
[36] M. Daňková, L. Běhounek, Automated proofs for composition-based fuzzy relational notions. In: Proc. Logic of Soft Computing 5 & 5th workshop of the ERCIM working group of Soft Computing, Malaga, 2006, pp. 96-102.
[37] M. Daňková, L. Běhounek, Relation Compositions in Fuzzy Class Theory. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 23-23.
[38] M. Daňková, I. Štajner-Papuga, B. Bede, Pseudo-Fourier transform. In: Proc. SISY, Subotica, 2006, pp. 145-153.
[39] M. Daňková, I. Štajner-Papuga, D. Hliněná, Pseudo Riemann-Stielties integral based Fourier transform. In: Proc. APLIMAT 2007, Bratislava, 2007, pp. 373-381.
[40] M. Daňková, M. Štěpnička, Approximation properties of inverse fuzzy transforms over a residuated lattice. In: Proc. IFSA/EUSFLAT’09, Lisabon, 2009, pp. 693-696.
[41] M. Daňková, M. Štěpnička, Genetic algorithms in fuzzy approximation. In: Proc. Joint EUSFLAT – LFA 2005, Barcelona, 2005, pp. 651-656.
[42] M. Daňková, M. Štěpnička, B. De Baets, Grades of monotonicity of fuzzy relations and their application to fuzzy rule bases. In: Proc. IEEE Symposium on Foundations of Computational Intelligence, Paris, 2011, pp. 37-44.
[43] M. Daňková, M. Štěpnička, B. De Baets, Grades of monotonicity of fuzzy relations and their application to fuzzy rule bases. In: Proc. IEEE Symposium on Foundations of Computational Intelligence, Paris, 2011, pp. 37-44.
[44] M. Daňková, M. Štěpnička, B. De Baets, Monotonicity of fuzzy rule bases: On differences between graded and non-graded approaches. In: Proc. EUSFLAT 2011, 2011, pp. 487-492.
[45] M. Daňková, R. Valášek, Image fusion using fuzzy transform. In: Hagenberg/Linz, 2006, pp. 49-53.
[46] F. Durante, E.P. Klement, R. Mesiar, C. Sempi, Conjunctors and their residual implicators. In: Proc. Fuzzy Sets, Probability, and Statistics – Gaps and Bridges, Linz, Rakousko, 2007, pp. 46-50.
[47] A. Dvořák, On Linguistic Approximation in the Frame of LFLC. In: Proc. IFSA 97, Prague, 1997, pp. 412-417.
[48] A. Dvořák, Properties of the Generalized Fuzzy Logic Inference. In: Proc. SIC’96 Budapest, Budapest, 1996, pp. 75-80.
[49] A. Dvořák, H. Habiballa, V. Pavliska, V. Novák, LFLC 2000 + MATLAB/SIMULINK – SYSTÉM PRO UNIVERSÁLNÍ APLIKACE FUZZY LOGIKY. In: Proc. Inteligentní systémy v praxi, Ostrava, 2003, pp. 47-48.
[50] A. Dvořák, M. Holčapek, A Characterization of Fuzzy Integrals Invariant with Respect to Permutation Groups. In: Proc. 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Heidelberg, 2012, pp. 208-217.
[51] A. Dvořák, M. Holčapek, A Characterization of Fuzzy Integrals Invariant with Respect to Permutation Groups. In: Proc. 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Heidelberg, 2012, pp. 208-217.
[52] A. Dvořák, M. Holčapek, Fuzzy integrals over complete residuated lattices. In: Proc. IFSA 2009 World Congress EUSFLAT 2009 World Conference, Lisabon, 2009, pp. 357-362.
[53] A. Dvořák, M. Holčapek, Fuzzy Measure Spaces Generated by Fuzzy Sets. In: Proc. 13th International Conference on Information Processing and Management of Uncertainty, Heidelberg, 2010, pp. 490-499.
[54] A. Dvořák, M. Holčapek, On Convergence of Fuzzy Integrals over Complete Residuated Lattices. In: Proc. EUSFLAT 2011, 2011, pp. 98-105.
[55] A. Dvořák, M. Holčapek, On Convergence of Fuzzy Integrals over Complete Residuated Lattices. In: Proc. EUSFLAT 2011, 2011, pp. 98-105.
[56] A. Dvořák, D. Jedelský, Defuzzification and Chaining of Rules in Hierarchical Fuzzy Systems. In: Proc. 1999 Eusflat-Estylf Joint Conference, Palma de Mallorca, 1999, pp. 199-202.
[57] A. Dvořák, V. Novák, A Fuzzy Logic Model of Detective Reasoning. In: Proc. IMPU’06, Paris, 2006, pp. 1572-1579.
[58] A. Dvořák, V. Novák, Automation of Human Reasoning in Economical Analysis. In: Proc. EUSFLAT 2007, Ostrava, 2007, pp. 103-109.
[59] A. Dvořák, V. Novák, Fuzzy Logic as a Methodology for the Treatment of Vagueness. In: Proc. logica 2004, Praha, 2005, pp. 141-152.
[60] A. Dvořák, V. Novák, Inconsistencies in Linguistic Descriptions from the Point of View of Fuzzy Logic. In: Proc. Third Conf. EUSFLAT 2003, Zittau/Goerlitz, 2003, pp. 523-528.
[61] A. Dvořák, V. Novák, V. Pavliska, H. Habiballa, LFLC 2000 + MATLAB/SIMULINK – SYSTÉM PRO UNIVERSÁLNÍ APLIKACE FUZZY LOGIKY. In: Proc. Matlab, Praha, 2002, pp. 80-85.
[62] A. Dvořák, M. Štěpnička, L. Vavříčková, Redundancies in systems of fuzzy/linguistic IF-THEN rules. In: Proc. EUSFLAT 2011, 2011, pp. 1022-1029.
[63] M. Dyba, V. Novák, On EQ-fuzzy logics with delta connective. In: Proc. EUSFLAT 2011, Amsterdam, 2011, pp. 156-162.
[64] R. Farana, B. Walek, M. Janošek, J. Žáček, Fuzzy-Logic Control in Fast Technological Processes. In: Proc. 15th International Carpathian Control Conference, ICCC 2014, Velké Karlovice, 2014, pp. 105-108.
[65] R. Farana, B. Walek, M. Janošek, J. Žáček, Fuzzy-Logic Control in Fast Technological Processes. In: Proc. 15th International Carpathian Control Conference, ICCC 2014, Velké Karlovice, 2014, pp. 105-108.
[66] R. Ghiselli-Ricci, R. Mesiar, k-Lipschitz strict triangular norms. In: Proc. EUSFLAT-LFA 2005, Barcelona, 2005, pp. 1307-1312.
[67] R. Ghiselli-Ricci, R. Mesiar, A. Mesiarová, Lipschitzianity of triangular subnorms. In: Proc. IPMU’2006, Paris, 2006, pp. 671-677.
[68] S. Gottwald, V. Novák, On the Consistency of Fuzzy Theories. In: Proc. VIIth IFSA World Congress, Praha, 1997, pp. 168-171.
[69] S. Gottwald, V. Novák, I. Perfilieva, Fuzzy control and pseudo-solutions of fuzzy relation equations. In: Zittau, Germany, 2002, pp. 12-18.
[70] S. Gottwald, V. Novák, I. Perfilieva, Fuzzy Control and t-norm-Based Fuzzy Logic. Some Recent Results. In: Proc. IPMU 2002, Annecy, 2002, pp. 1087-1094.
[71] T. Grbic, M. Daňková, I. Štajner-Papuga, Properties of the pseudo Riemann-Stiltjes integral. In: Proc. International Conference on Fuzzy Set Theory and Its Applications, Liptovský Ján, 2008, pp. 47-47.
[72] H. Habiballa, FUZZY PREDICATE LOGIC AND RESOLUTION THEOREM PROVING. In: Proc. 4 th Mathematical Conference, Nitra, 2006, pp. 79-85.
[73] H. Habiballa, INFERENCE METHODS FOR FUZZY PREDICATE LOGIC BASED ON RESOLUTION PRINCIPLE. In: Proc. Aplimat 2007, Bratislava, 2007, pp. 525-534.
[74] H. Habiballa, Non-clausal Resolution in Fuzzy Predicate Logic with Evaluated Syntax (background and implementation). In: Proc. The Logic of Soft Computing IV, Ostrava, 2005, pp. 51-54.
[75] H. Habiballa, Resolution Principle in Fuzzy Predicate Logic. In: Trnava, 2005, pp. 3-12.
[76] H. Habiballa, Resolution Principle in Fuzzy Predicate Logic. In: Proc. Aplimat 2006, Bratislava, 2006, pp. 525-534.
[77] H. Habiballa, Resolution Strategies for Fuzzy Description Logic. In: Proc. EUSFLAT, Ostrava, 2007, pp. 27-36.
[78] H. Habiballa, Resolution strategies for fuzzy predicate logic with evaluated syntax. In: Proc. ZNALOSTI 2007, Ostrava, 2007, pp. 201-212.
[79] H. Habiballa, Resolution strategies in fuzzy description logic. In: Proc. APLIMAT, Bratislava, 2008, pp. 523-532.
[80] H. Habiballa, V. Novák, Fuzzy General Resolution. In: Proc. Aplimat 2002, Bratislava, 2002, pp. 199-206.
[81] H. Habiballa, V. Novák, Character recognition through fuzzy logic analysis – Algorithms and Implementation. In: Proc. APLIMAT, Bratislava, 2013, pp. 541-550.
[82] H. Habiballa, V. Novák, A. Dvořák, V. Pavliska, Využití softwarového balíku LFLC 2000. In: Proc. 2nd International Conference Aplimat 2003, Bratislava, 2003, pp. 355-358.
[83] H. Habiballa, V. Novák, M. Dyba, J. SCHENK, EQ-ALGEBRAS AUTOMATED GENERATION BASED ON GENETIC ALGORITHMS. In: Proc. MENDEL, Brno, 2014, pp. 341-346.
[84] H. Habiballa, V. Novák, M. Dyba, J. SCHENK, EQ-ALGEBRAS AUTOMATED GENERATION BASED ON GENETIC ALGORITHMS. In: Proc. MENDEL, Brno, 2014, pp. 341-346.
[85] H. Habiballa, V. Pavliska, D. Bražina, Objektová knihovna evolučních algoritmů. In: Proc. Tvorba softwaru, Ostrava, 2005, pp. 18-24.
[86] H. Habiballa, V. Pavliska, A. Dvořák, Software system for time series prediction based on F-transform and linguistic rules. In: Proc. 8th International Conference on Applied Mathematics APLIMAT 2009, Bratislava, 2009, pp. 381-386.
[87] J. Hančl, L. Mišík, J. Tóth, Fuzzy rational numbers and approximation of irrationals. In: Proc. Workshop of the ERCIM working group on Soft Computing, Malaga, 2006, pp. 5-8.
[88] J. Hančl, L. Mišík, J. Tóth, Fuzzy rational numbers and approximation of irrationals. In: Proc. Eight International Conference on Fuzzy Set Theory and Applications FSTA 2006, Liptovský Ján, 2006, pp. 51-51.
[89] J. Hančl, L. Mišík, J. Tóth, Fuzzy rational numbers and approximation of irrationals. In: Proc. Eight International Conference on Fuzzy Set Theory and Applications FSTA 2006, Liptovský Ján, 2006, pp. 51-51.
[90] J. Hančl, L. Mišík, J. Tóth, Limit points of sequences of fuzzy real numbers. In: Proc. 28th Linz Seminar on Fuzzy Set Theory, Linz, 2007, pp. 66-69.
[91] P. Hoďáková, I. Perfiljeva, Fverb_^_1-transform of Functions of Two Variables. In: Proc. 8th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2013, Paris, France, 2013, pp. 547-553.
[92] P. Hoďáková, I. Perfiljeva, P. Hurtík, F-transform and Its Extension as Tool for Big Data Processing. In: Proc. 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014), 2014, pp. 374-383.
[93] P. Hoďáková, I. Perfiljeva, P. Hurtík, F-transform and Its Extension as Tool for Big Data Processing. In: Proc. 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014), 2014, pp. 374-383.
[94] P. Hoďáková, M. Vajgl, I. Perfiljeva, M. Daňková, Classification of Damages on Jewelry Stones: Preprocessing. In: Proc. 9th Joint World Congress on Fuzzy Systems and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, Edmonton, Canada, 2013, pp. 783-788.
[95] P. Hoďáková, M. Vajgl, I. Perfiljeva, M. Daňková, Classification of Damages on Jewelry Stones: Preprocessing. In: Proc. 9th Joint World Congress on Fuzzy Systems and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, Edmonton, Canada, 2013, pp. 783-788.
[96] P. Hoďáková, M. WRUBLOVÁ, I. Perfiljeva, Fuzzy Rule Base Interpolation and its Graphical Representation. In: Proc. 17th Zittau East-West Fuzzy Colloquium, Zittau/Görlitz, 2010, pp. 132-137.
[97] M. Holčapek, An Axiomatic Approach to Fuzzy Measures Like Set Cardinality for Finite Fuzzy Sets. In: Proc. 13th International Conference on Information Processing and Management of Uncertainty, Heidelberg, 2010, pp. 505-514.
[98] M. Holčapek, Fuzzy logic with fuzzy quantifiers. In: Proc. IPMU 2006 (IInformation Processing and Management of Uncertainty in Knowledge-based Systems), Paris, 2006, pp. 1882-1889.
[99] M. Holčapek, Fuzzy quantifiers. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 55-56.
[100] M. Holčapek, Fuzzy quantifiers. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 55-56.
[101] M. Holčapek, Graded Equipollence And Fuzzy C-measures Of Finite Fuzzy Sets. In: Proc. 2011 IEEE International Conference on Fuzzy Systems, Taiwan, 2011, pp. 2375-2382.
[102] M. Holčapek, Graded Equipollence of L-fuzzy sets. In: Proc. International Conference on Fuzzy Set Theory and Applications – FSTA, Liptovský Ján, 2008, pp. 53-54.
[103] M. Holčapek, Monadic L-fuzzy quantifiers of the type <1verb_^_n,1>. In: Proc. 5th EUSFLAT, Ostrava, 2007, pp. 409-415.
[104] M. Holčapek, A. Dvořák, On Monotonicity Of Type <1, 1> Fuzzy Quantifiers Determined By Fuzzy Measures. In: Proc. 2011 IEEE International Conference on Fuzzy Systems, Taiwan, 2011, pp. 2383-2390.
[105] M. Holčapek, A. Dvořák, Type <1, 1> Fuzzy Quantifiers Determined by Fuzzy Measures. In: Proc. IEEE World Congress on Computational Intelligence, Barcelona, 2010, pp. 3168-3175.
[106] M. Holčapek, A. Dvořák, Type <1,1> Fuzzy Quantifiers Determined by Fuzzy Measures. In: Proc. 13th Czech-Japan seminar on data analysis and decision making in service sciences, Otaru, Japan, 2010, pp. 1-6.
[107] M. Holčapek, V. Kreinovich, Processing Quantities with Heavy-Tailed Distribution of Measurement Uncertainty: How to Estimate the Tails of the Results of Data Processing. In: Proc. WSCS 2013, New York, 2014, pp. 25-32.
[108] M. Holčapek, I. Perfiljeva, V. Novák, Discrete Representation of Stationary Random Processes Using Fuzzy Transform. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Plzeň, 2013, pp. 215-222.
[109] M. Holčapek, I. Perfiljeva, V. Novák, Discrete Representation of Stationary Random Processes Using Fuzzy Transform. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Plzeň, 2013, pp. 215-222.
[110] M. Holčapek, M. Štěpnička, Arithmetics of Extensional Fuzzy Numbers — Part II: Algebraic framework. In: Proc. FUZZ-IEEE, 2012, pp. 1525-1532.
[111] M. Holčapek, M. Štěpnička, Arithmetics of Extensional Fuzzy Numbers — Part II: Algebraic framework. In: Proc. FUZZ-IEEE, 2012, pp. 1525-1532.
[112] M. Holčapek, T. Tichý, A comparison of smoothing filter based on fuzzy transform and Nadaraya-Watson estimators. In: Proc. Mathematical Methods in Economics, Praha: VŠE Praha, 2011, pp. 260-265.
[113] M. Holčapek, T. Tichý, Simulation methodology for financial assets with imprecise data. In: Proc. Mathematical Methods in Economics, Praha: VŠE Praha, 2011, pp. 709-714.
[114] M. Holčapek, T. Tichý, Statistical analysis of a smoothing filter based on fuzzy transform. In: Proc. EUSFLAT 2011, 2011, pp. 472-479.
[115] M. Holčapek, M. Turčan, Graded Equipollence of Fuzzy Sets. In: Proc. IFSA 2009 World Congress EUSFLAT 2009 World Conference, Lisabon, 2009, pp. 1565-1570.
[116] M. Holčapek, M. Turčan, Operations with General Fuzzy Decision Systems. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 106-107.
[117] M. Holčapek, M. Turčan, Operations with General Fuzzy Decision Systems. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 106-107.
[118] F. Huňka, Anticipation models in Beta. In: Proc. CASYS ’05, Liege, Belgie, 2005, pp. 14-14.
[119] F. Huňka, Anticipation Models in BETA. In: Proc. CASYS ‘ 05 Computing Anticipatory Systems, Liege, 2005, pp. 14-14.
[120] F. Huňka, Anticipation Models in BETA. In: Proc. 7th International Conference on Computing Anticipatory Systems (CASYS 05), Melville, New York, USA, 2006, pp. 354-360.
[121] F. Huňka, Anticipation Models in BETA. In: Proc. 7th International Conference on Computing Anticipatory Systems (CASYS 05), Melville, New York, USA, 2006, pp. 354-360.
[122] F. Huňka, BETA as Agent Based Simulation Language. In: Proc. 20th European Conference on Modelling and Simulation, Bonn Německo, 2006, pp. 521-525.
[123] F. Huňka, BetaSIM Extended Simulation Framework for General Discrete Event Simulation. In: Proc. Industrial Simulation Conference 2005, Berlin, 2005, pp. 159-162.
[124] F. Huňka, Making BETA to System Simulation. In: Proc. 21 st European Conference on Operational Research, Reykjavik, 2006, pp. 98-98.
[125] F. Huňka, Making BETA to System Simulation. In: Proc. 21 st European Conference on Operational Research, Reykjavik, 2006, pp. 98-98.
[126] F. Huňka, Object Oriented Approach in Fuzzy Arithmetic Using Parametric Representation of Fuzzy Numbers. In: Proc. New Dimensions in Fuzzy Logic and Related Technologies, Ostrava, 2007, pp. 273-278.
[127] F. Huňka, Object Oriented Software for Fuzzy Arithmetic. In: Proc. CASYS 07, Liege, 2007, pp. 31-32.
[128] F. Huňka, V. Pavliska, Object Oriented Approach in Optimization of Fuzzy Transform. In: Proc. WSEAS International Conference on Computers, Heraklion, 2008, pp. 1066-1071.
[129] F. Huňka, J. Ráček, Object Oriented Model for Cluster Analysis in Environmental Risk Management. In: Proc. EnviroInfo, Brno, 2005, pp. 446-452.
[130] P. Hurtík, Algoritmy pro detekci rohů a měření podobnosti aplikované na problematiku superresolution. In: Proc. Studentská vědecká konference, 2013, pp..
[131] P. Hurtík, Algoritmy pro detekci rohů a měření podobnosti aplikované na problematiku superresolution. In: Proc. Studentská vědecká konference, 2013, pp..
[132] P. Hurtík, I. Perfiljeva, Image compression methodology based on fuzzy transform. In: Proc. SOCO 2012, Berlin, 2013, pp. 525-532.
[133] P. Hurtík, I. Perfiljeva, Image compression methodology based on fuzzy transform. In: Proc. SOCO 2012, Berlin, 2013, pp. 525-532.
[134] P. Hurtík, I. Perfiljeva, Image compression methodology based on fuzzy transform using block similarity. In: Proc. EUSFLAT 2013, 2013, pp. 521-526.
[135] P. Hurtík, I. Perfiljeva, Image compression methodology based on fuzzy transform using block similarity. In: Proc. EUSFLAT 2013, 2013, pp. 521-526.
[136] P. Hurtík, I. Perfiljeva, Image Reduction/Enlargement Methods Based on the F-Transform. In: Proc. International conference of medical imaging using bio-inspired and soft computing, Asturias, 2013, pp. 3-10.
[137] P. Hurtík, I. Perfiljeva, Image Reduction/Enlargement Methods Based on the F-Transform. In: Proc. International conference of medical imaging using bio-inspired and soft computing, Asturias, 2013, pp. 3-10.
[138] P. Hurtík, I. Perfiljeva, P. Hoďáková, Fuzzy Transform Theory in The View of Image Registration Application. In: Proc. 15th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014), 2014, pp. 143-152.
[139] B. Jayaram, M. Baczynski, R. Mesiar, R-implications and the exchange principle: a complete characterization. In: Proc. EUSFLAT 2011, 2011, pp. 223-229.
[140] L. Jun, R. Mesiar, Q. Zhang, Absolute continuity of monotone measure and convergence in measure. In: Proc. IPMU 2010, Berlin, 2010, pp. 500-504.
[141] A. Jurio, D. Paternain, R. Mesiar, A. Kolesárová, H. Bustince, Construction of weak homogeneity from interval homogeneity. Application to image segmentation. In: Proc. FUZZ IEEE 2013, Hyderabad, 2013, pp. 1-8.
[142] A. Jurio, D. Paternain, R. Mesiar, A. Kolesárová, H. Bustince, Construction of weak homogeneity from interval homogeneity. Application to image segmentation. In: Proc. FUZZ IEEE 2013, Hyderabad, 2013, pp. 1-8.
[143] E. Kindler, Conveyors with Rollers and Their Reflective Simulation. In: Proc. International Workshop of Modelling & Applied Simulation MAS 2003, Genova, 2003, pp. 147-152.
[144] E. Kindler, Nested Simulation of Transitic Systems: An Application to Conveyors With Rollers. In: Proc. ASIS 2003 – Advaced Simulation of Systems, XXV International Autumn Colloquium, Ostrava, 2003, pp. 47-53.
[145] E. Kindler, Object-Oriented Reflective Simulation of Transitic Systems. In: Proc. The International Workshop on Harbour, Maritime and Multimodal Logistics Modelling & Simulation HMS 2003, Riga, 2003, pp. 202-205.
[146] E. Kindler, Object-oriented representations of formal theories as tools for simulation of anticiopatory systems. In: Proc. Computing Anticipatory Systems ’05, Melville, New York, 2006, pp. 253-259.
[147] E. Kindler, Reflective Simulation of Conveyors With SIMULA. In: Proc. 29th ASU Conference ? Object-Oriented Programming in Simulation, Ostrava, 2003, pp. 7-18.
[148] E. Kindler, Simulace a komponenty – co s tím?. In: Proc. XVI International Autumn Colloquium ASIS 2004, Ostrava, 2004, pp. 17-20.
[149] E. Kindler, Simulace systémů obsahujících simulující objekty. In: Proc. Sémiotická konference o společenských hrách, Dobrá Voda u Pelhřimova, 2003, pp. 139-164.
[150] E. Kindler, P. Berruet, Nested Anticipation i Design of Reconfigurable Manufacturing Systems. In: Proc. CASYS2005 – Seventh International Conference on Computing Anticipatory Systems, Liege, 2005, pp. 913-913.
[151] E. Kindler, T. Coudert, P. Berruet, Application of Reflective Models of a Transitic System. In: Proc. Second International Industrial Simulation Conference, Gent, Belgie, 2004, pp. 289-293.
[152] E. Kindler, C. Klimeš, I. Křivý, Simulation Study With Deep Block Structuring. In: Proc. Modelling and Simulation of Systems MOSIS 07, Ostrava, 2007, pp. 26-33.
[153] E. Kindler, I. Křivý, A New SIMULA Class for Simulation. In: Proc. ASIS 2007 ? Advanced Simulation of Systems, Ostrava, 2007, pp. 7-12.
[154] E. Kindler, I. Křivý, An Illustration of Axiomatization of Dynamic Systems. In: Proc. Spring International Conference MOSIS ’08 Modelling and Simulation of Systems, Ostrava, 2008, pp. 95-100.
[155] E. Kindler, I. Křivý, Anticipující systémy a projektová práce. In: Proc. PROMA 06, Praha, 2006, pp. 83-91.
[156] E. Kindler, I. Křivý, Application of Non-Euclidian Metrics in Simulation. In: Proc. 12th WSEAS International Conference on Automatic Control, Modelling & Simulation, Sofia, 2010, pp. 160-164.
[157] E. Kindler, I. Křivý, Computer Simulation of Anticipatory Artificial Systems. In: Proc. 21st European Conference on Operational Research, Reykjavik, 2006, pp. 98-98.
[158] E. Kindler, I. Křivý, Na cestě k počítačovému modelování informatizované společnosti. In: Proc. System Engineering 2002, Plzeň, 2002, pp. 103-113.
[159] E. Kindler, I. Křivý, Objektově orientovaná reprezentace znalostí. In: Proc. Seventh International Conference MOMAB 07 ?Modern Management?, Plzeň, 2007, pp. 119-129.
[160] E. Kindler, I. Křivý, On the Way to Reflective Simulation of Hospitals. In: Proc. Aplimat 2005, Bratislava, 2005, pp. 309-314.
[161] E. Kindler, I. Křivý, Simulation of Intelligent Systems – Block Structure revisited. In: Proc. 22nd European Conference on Modelling and Simulation, Dudweiler Germany, 2008, pp. 90-96.
[162] E. Kindler, I. Křivý, Simulation of Simulating Computerized Systems. In: Proc. 3rd International Conference on Advanced Engineering Design, Praha, 2003, pp. 241-241.
[163] E. Kindler, I. Křivý, Through Agents to Automatic Generating Reflective Models. In: Proc. XXVIIIth International Autumn Colloquium ASIS 2006, Ostrava, 2006, pp. 195-200.
[164] E. Kindler, I. Křivý, Through Agents to Automatic Generating Reflective Models. In: Proc. XXVIIIth International Autumn Colloquium ASIS 2006, Ostrava, 2006, pp. 195-200.
[165] E. Kindler, I. Křivý, C. Klimeš, Simulation Aided Anticipation of Intelligent Systems Behavior. In: Proc. Engineering and Management of IT-Based Organisational Systems, Tecumseh, Ontario, Canada, 2008, pp. 1-6.
[166] E. Kindler, I. Křivý, A. Tanguy, Automatic Conversion to Reflective Simulation Models. In: Proc. Conference of the Association of SIMULA Users, Brno, 2002, pp. 15-25.
[167] E. Kindler, I. Křivý, A. Tanguy, Automatisation de la construction de modeles pour la simulation reflective. In: Proc. Conférence Francophone de Modélisation et Simulation, Toulouse, 2003, pp. 379-384.
[168] E. Kindler, I. Křivý, A. Tanguy, Formalized World Viewings – a Way to Nested Simulation. In: Proc. Second International Industrial Simulation Conference, Gent, 2004, pp. 20-24.
[169] E. Kindler, I. Křivý, A. Tanguy, Object-Oriented System Analysis of Anticipatory Systems in Weak Sense. In: Proc. 6th International Conference on Computing Anticipatory Systems, Lutych, 2003, pp. 3-3.
[170] E. Kindler, I. Křivý, A. Tanguy, Reflective Simulation of Discrete Logistic and Production Systems. In: Proc. 15th European Simulation Multiconference, Delft, 2001, pp. 861-865.
[171] E. Kindler, I. Křivý, A. Tanguy, Reflective Simulation of Logistic and Production Systems. In: Proc. HMS 2002 & MAS 2002, Genoa, 2002, pp. 97-102.
[172] E. Kindler, I. Křivý, A. Tanguy, Special Approach to Reflective Simulation. In: Proc. 35th Spring International Conference Modelling and Simulation of Systems, Ostrava, 2001, pp. 59-66.
[173] E. Kindler, I. Křivý, A. Tanguy, Systematics of Nested Simulation. In: Proc. The International Workshop on HMS 2003, Riga, 2003, pp. 191-195.
[174] E. Kindler, I. Křivý, A. Tanguy, Taxonomy of Nesting Simulation Models. In: Proc. 29th Conference of ASU – ASU´2003, Ostrava, 2003, pp. 45-53.
[175] E. Kindler, I. Křivý, A. Tanguy, Tentative de simulation réflective des systemes de production et logistiques. In: Proc. 3e Conférence Francophone de Modélisation et Simulation, Troyes, 2001, pp. 427-434.
[176] E. Kindler, I. Křivý, A. Tanguy, Towards Automatic Generating of Reflective Simulation Models. In: Proc. Modelling and Simulation of Systems, Ostrava, 2002, pp. 13-19.
[177] E.P. Klement, R. Mesiar, A concept of universal fuzzy integrals. In: Proc. NAFIPS 2012, 2012, pp. 232-235.
[178] E.P. Klement, R. Mesiar, A concept of universal fuzzy integrals. In: Proc. NAFIPS 2012, 2012, pp. 232-235.
[179] E.P. Klement, R. Mesiar, Integral- Based Modifications of OWA-operators.. In: Proc. Nonlinear mathematics for uncertainty and its applications 2011, Berlin, 2011, pp. 325-331.
[180] E.P. Klement, R. Mesiar, E. Pap, A Universal Integral Independent of Measurable Spaces and Function Spaces. In: Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 08, Malaga, 2008, pp. 1470-1475.
[181] E.P. Klement, R. Mesiar, E. Pap, Integrals which can be defined on arbitrary measurable spaces. In: Proc. Fuzzy Sets, Probability, and Statistics – Gaps and Bridges, Linz, Rakousko, 2007, pp. 72-77.
[182] C. Klimeš, Application of Computer Simulation in Information Systeme. In: Proc. CASYS07, Liege, 2007, pp. 9-9.
[183] C. Klimeš, Application of Computer Simulation in Information Systeme. In: Proc. 8th International Conference on Computing Anticipatory Systems, Liege, 2007, pp. 49-49.
[184] C. Klimeš, Mathematical – Logical Fuzzy Modeling of Decision Making Processes. In: Proc. ISKI 2008, Nitra, 2008, pp. 47-49.
[185] C. Klimeš, Model systému na podporu rozhodování za neurčitosti. In: Proc. ISKI 2008, Nitra, 2008, pp. 50-60.
[186] C. Klimeš, Portal Solutions for University Information Systems with the LMS Integration. In: Proc. EUNIS 2007, Grenoble, 2007, pp. 41-57.
[187] C. Klimeš, J. Knybel, J. Procházka, Various process wizard for information systems – Using fuzzy Petri nets for process definition. In: Proc. ICEIS 2006, Portugal, 2006, pp. 158-164.
[188] C. Klimeš, J. Knybel, J. Procházka, Various process wizard for information systems – Using fuzzy Petri nets for process definition. In: Proc. ICEIS 2006, Portugal, 2006, pp. 158-164.
[189] J. Knybel, C. Klimeš, Fuzzy Petri Nets of Education. In: Proc. International Conference on Engineering Education, Gliwice, 2005, pp. 601-606.
[190] J. Knybel, V. Pavliska, Representation of Fuzzy IF-THEN rules by Petri Nets. In: Proc. ASIS 2005, Ostrava, 2005, pp. 121-125.
[191] V. Kreinovich, I. Perfiljeva, From Gauging Accuracy of Quantity Estimates to Gauging Accuracy and Resolution of Measuring Physical Fields. In: Proc. Intern. Conf. on Parallel Processing and Applied Mathematics PPAM’2009, Berlin, 2010, pp. 456-465.
[192] I. Křivý, Anticipation of Local Epidemics Management. In: Proc. 8th International Conference CASYS’07, Liege, 2008, pp. 232-5.
[193] I. Křivý, Contribution to Population Dynamics of Single Species Discrete Anticipatory Systems. In: Proc. 6th International Conference APLIMAT 2007, Bratislava, 2007, pp. 185-193.
[194] I. Křivý, Modeling and Simulation of Local Epidemics. In: Proc. International Conference on Computer Systems and Technologies, Rousse, 2007, pp. 1-6.
[195] I. Křivý, Optimization of fuzzy models using evolutionary algorithms. In: Proc. 7th International Conference APLIMAT 2008, Bratislava, 2008, pp. 539-548.
[196] I. Křivý, Simulation of in-Patient Mobility in Hospitals. In: Proc. WSEAS International Conference on Computers, Heraklion, 2008, pp. 1084-1087.
[197] I. Křivý, E. Kindler, An Overview of Implemented Nested Simulation Models. In: Proc. 3rd International Conference APLIMAT 2004, Bratislava, 2004, pp. 609-614.
[198] I. Křivý, E. Kindler, Computer Representation of Formalized View of in-Patient Departments of Hospitals. In: Proc. CompSysTech 2005, Varna, 2005, pp. 1-6.
[199] I. Křivý, E. Kindler, Education and Training in Computer Simulation: a Way to Nested Simulation. In: Proc. of the International Conference on Computer Systems and Technologies – CompSysTech’04, Rousse, 2004, pp. 51-55.
[200] I. Křivý, E. Kindler, New Flexible Simulation Tool in SIMULA. In: Proc. European Simulation and Modeling Conference ESM’2007, St.Julian’s, 2007, pp. 124-128.
[201] I. Křivý, E. Kindler, Reflective Simulation of In-Patients Dynamics. In: Proc. 5th International Conference Aplimat, Bratislava, 2006, pp. 613-617.
[202] I. Křivý, E. Kindler, Synthesis od Two Anticipatory Models in Design and Life-Cycle of Hospitals. In: Proc. CASYS’05, Liege, 2005, pp. 16-16.
[203] I. Křivý, E. Kindler, Terminology of Nested Simulation Models. In: Proc. International Conference on Computer Systems and Technologies, Veliko Turnovo, 2006, pp. 51-56.
[204] I. Křivý, E. Kindler, A. Tanguy, Towards Simulation of Simulating Enterprises. In: Proc. CompSysTech´2003, Sofia, 2003, pp. 151-156.
[205] I. Křivý, E. Kindler, A. Tanguy, P. Lacomme, Simulation of FSM Including Automated Guided Vehicle. In: Proc. Modelling and Simulation 2003, Naples, 2003, pp. 122-126.
[206] I. Křivý, A. Tanguy, E. Kindler, Software for Anticipatory Production Systems. In: Proc. CASYS’01 – Computing anticipatory systems, Liege, 2001, pp. 20-20.
[207] I. Křivý, J. Tvrdík, Stochastic Optimization in Smoothing Time Series of Czech Labor Market Descriptors. In: Proc. 53rd Session of the International Statistical Institute, Seoul, 2001, pp. 253-254.
[208] J. Kukal, J. Tvrdík, Sammon’s Mapping as Subject of Heuristic Minimization. In: Proc. Technical Computing Prague 2005, Praha, 2005, pp. 67-67.
[209] J. Kupka, Devaney Chaotic Fuzzy Discrete Dynamical Systems. In: Proc. 2010 IEEE World Congress on Computational Intelligence, Barcelona, 2010, pp. 1-5.
[210] J. Kupka, Dynamical properties in the space of fuzzy numbers. In: Proc. EUSFLAT-LFA 2011, 2011, pp. 778-784.
[211] J. Kupka, (Fuzzy) Dynamical Systems. In: Proc. International Conference on Fuzzy Set Theory and Applications – FSTA, Liptovsky Jan, 2008, pp. 74-74.
[212] J. Kupka, Some Remarks on Approximations of the Zadeh’s Extension. In: Proc. 2013 IEEE International Conference on Fuzzy Systems, 2013, pp. 1-7.
[213] J. Kupka, J. Boroński, Inverse limits in fuzzy dynamical systems induced by interval maps. In: Proc. 11th International FLINS Conference, New Jersey, 2014, pp. 300-305.
[214] J. Kupka, I. Tomanová, Some dependencies among attributes given by fuzzy confirmation measures. In: Proc. EUSFLAT – LFA 2011, 2011, pp. 498-505.
[215] N.M. Madrid, E. Barrenechea, H. Bustince, J. Fernandez, I. Perfiljeva, Upper bounding Overlaps by Groupings. In: Proc. 7th International Summer School on Aggregation Operators, 2013, pp. 355-365.
[216] N.M. Madrid, E. Barrenechea, H. Bustince, J. Fernandez, I. Perfiljeva, Upper bounding Overlaps by Groupings. In: Proc. 7th International Summer School on Aggregation Operators, 2013, pp. 355-365.
[217] N.M. Madrid, B. De Baets, C. Lopez-Molina, Generalized antisymmetric filters for edge detection. In: Proc. 5th International Conference on Soft Computing and Pattern Recognition, Hanoi, Vietnam, 2013, pp. 25-30.
[218] N.M. Madrid, B. De Baets, C. Lopez-Molina, Generalized antisymmetric filters for edge detection. In: Proc. 5th International Conference on Soft Computing and Pattern Recognition, Hanoi, Vietnam, 2013, pp. 25-30.
[219] N.M. Madrid, I. Perfiljeva, Opening and closing from idempotent dilations. In: Proc. The 11th International FLINS Conference on Decision Making and Soft Computing, 2014, pp. 664-669.
[220] N.M. Madrid, U. Straccia, On top-k retrieval for a family of non-monotonic ranking functions. In: Proc. 10th international conference on Flexible Query Answering Systems, 2013, pp. 507-518.
[221] R. Mesiar, K. Ahmad, A. Mesiarova-Zemankova, Comonotone maxitivity and extended Sugeno integral. In: Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 08, Malaga, 2008, pp. 1484-1489.
[222] R. Mesiar, E.P. Klement, S. Saminger, A note on ordinal sum t-norms on bounded lattices. In: Proc. EUSFLAT-LFA, Barcelona, 2005, pp. 385-388.
[223] R. Mesiar, A. Mesiarová, Ľ. Valášková, Generator-based universal fuzzy measures and integrals. In: Proc. IPMU’2006, Paris, 2006, pp. 1718-1723.
[224] R. Mesiar, A. Mesiarova-Zemankova, Symmetrization of modular aggregation functions. In: Proc. IPMU 2010, Berlin, 2010, pp. 390-397.
[225] R. Mesiar, V. Novák, On Fitting Operations. In: Proc. VIIth IFSA World Congress ’97, Praha, 1997, pp. 286-290.
[226] L. Mišík, I. Křivý, J. Tvrdík, On convergence of controlled random search algorithms. In: Proc. 14th Symposium in Computational Statistics, Utrecht, 2000, pp. 221-222.
[227] L. Mišík, J. Tóth, Distribution functions of ratio block sequences. In: Proc. 70 rokov SvF STU, Bratislava, 2008, pp. 1-8.
[228] L. Mišík, J. Tóth, On asymptotic behaviour of universal fuzzy measures. In: Proc. Workshop of the ERCIM working group on Soft Computing, Malaga, 2006, pp. 1-4.
[229] L. Mišík, J. Tóth, On asymptotic behaviour of universal fuzzy measures. In: Proc. Fuzy Set Theory and Applications FSTA 2006, Liptovský Ján, 2006, pp. 81-81.
[230] L. Mišík, J. Tóth, J. Bukor, On continuity of asymptotic fuzzy measures with respect to a parameter. In: Proc. Fuzzy Sets Theory and Applications (FSTA), Liptovský Mikuláš, 2008, pp. 24-26.
[231] L. Mišík, J. Tvrdík, I. Křivý, On Convergence of a Class of Stochastic Algorithms. In: Proc. ROBUST’2001, Praha, 2001, pp. 198-209.
[232] J. Močkoř, alpha-Cuts and Models of Fuzzy Logic. In: Proc. The 9th International FLINS Conference on Foundations and, Singapore, 2010, pp. 52-57.
[233] J. Močkoř, Categories and fuzzy automata. In: Proc. 3th Czech-Japan Seminar on Data Analysis and Decision making under uncertainty, Osaka, 2000, pp. 154-159.
[234] J. Močkoř, Construction and Errors Estimation of Locally Linear Fuzzy Models. In: Ostrava, 1998, pp. 1-12.
[235] J. Močkoř, Construction of fuzzy logic models in categories of sets with similarities. In: Proc. The 11th Czech-Japan Seminare on Data Analysis and Decision Making under Uncertainty, Sendai, 2008, pp. 27-33.
[236] J. Močkoř, Cut Systems in Omega-sets and Reflections. In: Proc. 10th International FLINS Conference, New Jersey-London-Singapore-Beijing, 2012, pp. 586-591.
[237] J. Močkoř, Error functions of locally linear functions derived from input-output data. In: Proc. International Symposium on Management Engineering, Japonsko, 2006, pp. 1-8.
[238] J. Močkoř, Error functions of locally linear functions derived from input-output data. In: Proc. International Symposium on Management Engineering, Japonsko, 2006, pp. 1-8.
[239] J. Močkoř, Extension principle for category of fuzzy sets over MV-algebras. In: Proc. Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Koyasaqn, 2002, pp. 160-166.
[240] J. Močkoř, Extensional objects and complete sets in categories of fuzzy sets over MV-algebras. In: Proc. 8th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Praha, 2005, pp. 76-81.
[241] J. Močkoř, Fuzzy and Non-deterministic Automata. In: Ostrava, 1998, pp. 1-12.
[242] J. Močkoř, Fuzzy Decision Systems (Structure and Properties),. In: Proc. Workshop on Soft Sciences, Nagaoka, Nagaoka, 1999, pp. 57-59.
[243] J. Močkoř, Fuzzy logic models in a category of sets with similarities. In: Proc. of the 8th International FLINS Conference, Singapore, 2008, pp. 163-168.
[244] J. Močkoř, Fuzzy logic models in a category of sets with similarity relations. In: Proc. Czech-Japan Seminar on Fuzzy Systems and Inovational Computing, Fukuoka, 2006, pp. 58-64.
[245] J. Močkoř, Fuzzy Sets in Categories of Sets with Similarity Relations. In: Proc. Fuzzy Days, Heidelberg, 2006, pp. 677-682.
[246] J. Močkoř, Fuzzy Sets in Categories of Sets with Similarity Relations. In: Proc. Fuzzy Days, Heidelberg, 2006, pp. 677-682.
[247] J. Močkoř, Groups with greatest common divisor theory. In: 2000, pp. 469-479.
[248] J. Močkoř, Homomorphisms of fuzzy logic models based on sets with similarities. In: Proc. 5th EUSFLAT Conference, Ostrava, 2007, pp. 417-422.
[249] J. Močkoř, Characteristic morphisms and models of fuzzy logic in a category of sets with similarities. In: Proc. IFSA World Congress, Berlin, 2007, pp. 832-840.
[250] J. Močkoř, Isomorphisms of fuzzy sets and cut systems. In: Proc. 12th International Work-Conference on Artificial Neural Networks (IWANN13), Heidelberg, 2013, pp. 385-392.
[251] J. Močkoř, Isomorphisms of fuzzy sets and cut systems. In: Proc. 12th International Work-Conference on Artificial Neural Networks (IWANN13), Heidelberg, 2013, pp. 385-392.
[252] J. Močkoř, Locally linear fuzzy models. In: Proc. Mathematical Methods in Economy Conference, Ostrava, 1997, pp. 140-149.
[253] J. Močkoř, Morphisms in categories of sets with similarity relations. In: Proc. IFSA World Congress/EUSFLAT Conference, Lisabon, 2009, pp. 560-568.
[254] J. Močkoř, Morphisms in categories of sets with similarity relations. In: Proc. IFSA World Congress/EUSFLAT Conference, Lisabon, 2009, pp. 560-568.
[255] J. Močkoř, Operations in Fuzzy Sets and Cut Systems. In: Proc. International Conference on Computational Science and Computational Intelligence (CSCI 2014), Los Alamitos, California, 2014, pp. 416-421.
[256] J. Močkoř, Reflective categories of cut systems and fuzzy sets in Q-sets. In: Proc. 15th IFSA World Congress, 2013, pp. 625-630.
[257] J. Močkoř, Reflective categories of cut systems and fuzzy sets in Q-sets. In: Proc. 15th IFSA World Congress, 2013, pp. 625-630.
[258] J. Močkoř, Weak reflections in categories of fuzzy sets over MV-algebras. In: Proc. The logic of soft computing IV, 4th Workshop of the ERCIM Working group on soft computing, Ostrava, 2005, pp. 88-89.
[259] P. Murinová, V. Novák, The analysis of the generalized square of opposition-extension. In: Proc. EUSFLAT 2013, 2013, pp. 252-259.
[260] P. Murinová, V. Novák, The analysis of the generalized square of opposition-extension. In: Proc. EUSFLAT 2013, 2013, pp. 252-259.
[261] L. Nosková, Fuzzy relation equations with dual composition. In: Proc. Joint EUSFLAT – LFA 2005, Barcelona, 2005, pp. 657-662.
[262] L. Nosková, System of fuzzy relation equations: Criteria of solvability. In: Proc. IPMU 2006 (Information Processing and Management of Uncertainty in Knowledge-based Systems), Paříž, 2006, pp. 1868-1875.
[263] L. Nosková, System of fuzzy relation equations: Criteria of solvability. In: Proc. IPMU 2006 (Information Processing and Management of Uncertainty in Knowledge-based Systems), Paříž, 2006, pp. 1868-1875.
[264] L. Nosková, I. Perfilieva, System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions. In: Proc. FUZZ-IEEE, London, 2007, pp. 1525-1530.
[265] V. Novák, A Formal Integrated Theory of Approximate Reasoning. In: Proc. Fifth International Fuzzy Systems Association World Congress ’93, Seoul, Korea, 1993, pp. 399-402.
[266] V. Novák, A General Methodology for Modeling with Words. In: Proc. NAFIPS 2009, Cincinnati, Ohio, 2009, pp. 289-294.
[267] V. Novák, A General Methodology for Modeling with Words. In: Proc. NAFIPS 2009, Cincinnati, Ohio, 2009, pp. 289-294.
[268] V. Novák, Approximation Abilities of Perception-based Logical Deduction. In: Proc. Third Conf. EUSFLAT 2003, Zittau/Goerlitz, 2003, pp. 630-635.
[269] V. Novák, Design and Tuning of Linguistic Descriptions for LFLC. In: Proc. CIFT ’93 – Current Issues in Fuzzy Technologies, Trento, 1993, pp. 26-29.
[270] V. Novák, EQ-algebras in progress. In: Proc. World Congress IFSA 2007, Berlin, 2007, pp. 876-884.
[271] V. Novák, Evaluating Linguistic Expressions and Their Role in the Design of the Fuzzy Control Strategy. In: Proc. Second Int. Symposium on Fuzzy logic and Applications ISFL’97, Canada-Switzerland, 1997, pp. 89-94.
[272] V. Novák, From Fuzzy Type Theory to Fuzzy Intensional Logic. In: Proc. Third Conf. EUSFLAT 2003, Zittau/Goerlitz, 2003, pp. 619-623.
[273] V. Novák, Fuzzy Algebras as Models of Fuzzy Theories. In: Proc. Joint EUSFLAT-ESTYLF’99 Conference, Palma de Mallorca, 1999, pp. 43-46.
[274] V. Novák, Fuzzy Logic in Broader Sense: A Useful Tool for AI. In: Proc. 9th Workshop on Uncertainty Processing, Prague, 2012, pp. 163-169.
[275] V. Novák, Fuzzy Logic in Broader Sense: A Useful Tool for AI. In: Proc. 9th Workshop on Uncertainty Processing, Prague, 2012, pp. 163-169.
[276] V. Novák, Fuzzy Logic Theory of Evaluating Expressions and Comparative Quantifiers. In: Proc. IMPU’06, Paris, 2006, pp. 1572-1579.
[277] V. Novák, Fuzzy logic with countable evaluated syntax. In: Proc. Eleventh International Fuzzy Systems Association World Congress, Beijing, 2005, pp. 1264-1269.
[278] V. Novák, Fuzzy Relation Equations with Words. In: Proc. Meeting on State of the Art Assessment and New Directions for Research, Heidelberg, 2004, pp. 167-185.
[279] V. Novák, Fuzzy Type Theory As Higher Order Fuzzy Logic. In: Proc. The Sixth International Conference on Intelligent Technologies, Bankgok, 2005, pp. 21-26.
[280] V. Novák, Fuzzy Type Theory, Descriptions, and Partial Functions. In: Proc. EUSLFAT 2011, Amsterdam, 2011, pp. 189-195.
[281] V. Novák, Genuine Linguistic Fuzzy Logic Control: Powerful and Successful Control Method. In: Proc. IPMU 2010, Berlin, 2010, pp. 634-644.
[282] V. Novák, Granularity via Properties: The Logical Approach. In: Proc. Int. Conf. on Fuzzy Logic and Technology EUSFLAT’2001, Lecester, Anglie, 2001, pp. 372-374.
[283] V. Novák, Higher Order Fuzzy Logic. In: Proc. ODAM2011, Olomouc, 2011, pp. 50-50.
[284] V. Novák, Indeterminacy, Linguistic Semantics and Fuzzy Logic. In: Proc. Conf. Intelligent Systems: A Semiotic Perspective, 1996, pp. 95-100.
[285] V. Novák, Is Crucial Role in Soft Computing Played by Words?. In: Proc. Int. Panel Conference on Soft and Intelligent Computing, Budapest, 1996, pp. 223-228.
[286] V. Novák, Logical analysis of Max–Min rule of inference. In: Proc. First European Congress on Intelligent Techniques and Soft Computing EUFIT’93, Aachen, 1993, pp. 1311-1317.
[287] V. Novák, Logical Aspect in Fuzzy Control. In: Proc. Int. Conference MEPP’93, Finland, 1993, pp. 61-69.
[288] V. Novák, Mathematical Fuzzy Logic : Today and Tomorrow. In: Proc. International Conference on Rough Sets, Fuzzy Sets and Soft Computing, New Delhi, 2011, pp. 108-118.
[289] V. Novák, Mining Information from Time Series using Fuzzy Natural Logic. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Jindřichův Hradec, 2013, pp. 43-50.
[290] V. Novák, Mining Information from Time Series using Fuzzy Natural Logic. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Jindřichův Hradec, 2013, pp. 43-50.
[291] V. Novák, Modeling with Words and Its Applications. In: Proc. FLINS 2010, New Jersey, 2010, pp. 17-28.
[292] V. Novák, Models and submodels of fuzzy theories. In: Proc. IPMU 2002, Annecy, 2002, pp. 385-390.
[293] V. Novák, On Virtues of Many-Valued (Fuzzy) Type Theories. In: Proc. Quantitative Logic and Soft Computing 2010, Berlin, 2010, pp. 53-69.
[294] V. Novák, Open Theories in Fuzzy Logic in Narrow Sense. In: Proc. Sixth Int. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’96, Granada, 1996, pp. 1003-1007.
[295] V. Novák, Perception-Based Logical Deduction. In: Proc. Fuzzy Days, Berlin, 2005, pp. 237-250.
[296] V. Novák, Perception-based Logical Deduction as Alternative Approximate Reasoning Method. In: Proc. FUZZ-IEEE2005 The international Conference on FUZZY Systems, Reno, Nevada,, 2005, pp. 1032-1037.
[297] V. Novák, Principal Fuzzy Type Theories for Fuzzy Logic in Broader Sense. In: Proc. Information Proseccisng and Management of Unicertainty in Knowledge-Based Systems IPMU 08, Malaga, 2008, pp. 1045-1052.
[298] V. Novák, Remarks to Model Theory in Higher-Order Fuzzy Logic. In: Proc. FLINS2012, Singapore, 2012, pp. 621-626.
[299] V. Novák, Remarks to Model Theory in Higher-Order Fuzzy Logic. In: Proc. FLINS2012, Singapore, 2012, pp. 621-626.
[300] V. Novák, Soft Computing Methods in Managerial Decision Making. In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making Under Uncertainty, Hyogo, 2004, pp. 63-68.
[301] V. Novák, Towards Fuzzy Type Theory. In: Proc. Int. Seminar on Multiple-Valued Logic ISMVL 2003, Tokyo, 2003, pp. 65-70.
[302] V. Novák, Transparent Model of Linguistic Trichotomy and Hedges. In: Proc. Fourth European Congress on Intelligent Tehcniques and Soft Computing, Aachen, 1996, pp. 35-39.
[303] V. Novák, What is ‘The’ fuzzy logic. In: Proc. 8th Czech-Japan Seminar on data Analysis and Decision Making under Uncertainty, Praha, 2005, pp. 82-90.
[304] V. Novák, M. Dyba, Non-commutative EQ-logics and their extensions. In: Proc. IFSA/EUSFLAT’09, Lisabon, 2009, pp. 1422-1427.
[305] V. Novák, M. Dyba, Non-commutative EQ-logics and their extensions. In: Proc. IFSA/EUSFLAT’09, Lisabon, 2009, pp. 1422-1427.
[306] V. Novák, H. Habiballa, Recognition of Damaged Letters Based on Mathematical Fuzzy Logic Analysis. In: Proc. International Joint Conference CISIS?12-ICEUTE´12-SOCO´12 Special Sessions, Berlin, 2012, pp. 497-506.
[307] V. Novák, H. Habiballa, Recognition of Damaged Letters Based on Mathematical Fuzzy Logic Analysis. In: Proc. International Joint Conference CISIS?12-ICEUTE´12-SOCO´12 Special Sessions, Berlin, 2012, pp. 497-506.
[308] V. Novák, P. Hurtík, H. Habiballa, Recognition of heavily distorted characters on metal. In: Proc. IFSA World Congress, 2013, pp. 733-738.
[309] V. Novák, P. Murinová, Intermediate Quantifiers, Natural Language and Human Reasoning. In: Proc. Third International Conference on Quantitative Logic and Soft Computing, New Jersey, 2012, pp. 684-692.
[310] V. Novák, V. Pavliska, I. Perfiljeva, M. Štěpnička, F-transform and Fuzzy Natural logic in Time Series Analysis. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 40-47.
[311] V. Novák, V. Pavliska, I. Perfiljeva, M. Štěpnička, F-transform and Fuzzy Natural logic in Time Series Analysis. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 40-47.
[312] V. Novák, V. Pavliska, M. Štěpnička, L. Štěpničková, Time Series Trend Extraction and its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic. In: Proc. 2nd World Conference on Soft Computing, Baku, 2012, pp. 593-599.
[313] V. Novák, V. Pavliska, M. Štěpnička, L. Štěpničková, Time Series Trend Extraction and its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic. In: Proc. 2nd World Conference on Soft Computing, Baku, 2012, pp. 593-599.
[314] V. Novák, V. Pavliska, M. Štěpnička, L. Štěpničková, Time Series Trend Extraction and Its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic. In: Proc. 2nd World congress on soft computing, Switzerland, 2014, pp. 429-442.
[315] V. Novák, V. Pavliska, M. Štěpnička, L. Štěpničková, Time Series Trend Extraction and Its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic. In: Proc. 2nd World congress on soft computing, Switzerland, 2014, pp. 429-442.
[316] V. Novák, V. Pavliska, R. Valášek, Specialized Software for Fuzzy Natural Logic and Fuzzy Transform Applications. In: Proc. IEEE International Conference on Fuzzy Systems, Beijing, China, 2014, pp. 2337-2344.
[317] V. Novák, V. Pavliska, R. Valášek, Specialized Software for Fuzzy Natural Logic and Fuzzy Transform Applications. In: Proc. IEEE International Conference on Fuzzy Systems, Beijing, China, 2014, pp. 2337-2344.
[318] V. Novák, I. Perfilieva, Mjetody mjagkih vyčisljenij v prinjatii upravljenčjeskih rješjenij. In: Uljanovsk, 2008, pp. 88-95.
[319] V. Novák, I. Perfilieva, On Logical and Algebraic Foundations of Approximate Reasoning. In: Proc. International Conference FUZZ-IEEE ’97, Barcelona, 1997, pp. 693-698.
[320] V. Novák, I. Perfilieva, On Model Theory in Fuzzy Logic in Broader Sense. In: Proc. Fifth European Congress on Intelligent Techniques and Soft Computing EUFIT’97, Aachen, 1997, pp. 142-147.
[321] V. Novák, I. Perfilieva, Prinjatije rješjenij mjetodami mjakkih vyčisljenij. In: Proc. Nječjetkije sistjemy i mjagkije vyčisljenija, Uljanovsk, 2008, pp. 22-39.
[322] V. Novák, I. Perfilieva, Remark to the Consistency of Fuzzy Theories. In: Proc. Eighth Int. Fuzzy Systems Association World Congress IFSA’99, Taipei, 1999, pp. 1052-1056.
[323] V. Novák, I. Perfilieva, T.V. Afanas’jeva, Integral’nyj metod analiza nechetkih vremennyh rjadov i funkcional’nogo modelirovanija v zadachah prinjatija reshenij. In: Proc. 11th All-Russian Artificial Intelligence Conference, Dubna, Russia, 2008, pp. 90-99.
[324] V. Novák, I. Perfilieva, A. Dvořák, Mining Pure Linguistic Associations on the Basis of Perceptions in Numerical Data. In: Proc. NAFIPS’06, Montreal, 2006, pp. 639-644.
[325] V. Novák, I. Perfilieva, A. Dvořák, Mining Pure Linguistic Associations on the Basis of Perceptions in Numerical Data. In: Proc. NAFIPS’06, Montreal, 2006, pp. 639-644.
[326] V. Novák, I. Perfilieva, A. Dvořák, Q. Chen, Q. Wei, P. Yan, MINING LINGUISTIC ASSOCIATIONS FROM NUMERICAL DATABASES. In: Proc. Eleventh International Fuzzy Systems Association World Congress, Beijing, 2005, pp. 546-551.
[327] V. Novák, I. Perfilieva, S. Gottwald, Fuzzy Control and Pseudo-Solutions of Fuzzy Relation Equations. In: IPM, Hochschule Zittau/Goerlitz, 2003, pp. 217-225.
[328] V. Novák, I. Perfilieva, N.G. Jaruškina, T.V. Afanas’jeva, Intjegral’nyj mjetod analiza nječjetkih vrjemjennyh rjadov i funkcional’nogo modjelirovanija v zadačah prinjatija rješjenij. In: Ulyanovsk, 2008, pp. 96-101.
[329] V. Novák, I. Perfiljeva, M. Holčapek, Analysis of stationary processes using fuzzy transform. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 714-721.
[330] V. Novák, I. Perfiljeva, M. Holčapek, Analysis of stationary processes using fuzzy transform. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 714-721.
[331] V. Novák, R. Smolíková, On Learning of Linguistic Descriptions from Data in LFLC. In: Proc. Int. Panel Conference on Soft and Intelligent Computing, Budapest, 1996, pp. 229-234.
[332] V. Novák, M. Štěpnička, J. Kupka, Linguistic descriptions: their structure and applications. In: Proc. 10th International Conference on Flexible Query Answering Systems, Berlin Heidelberg, 2013, pp. 209-220.
[333] V. Novák, M. Štěpnička, J. Kupka, Linguistic descriptions: their structure and applications. In: Proc. 10th International Conference on Flexible Query Answering Systems, Berlin Heidelberg, 2013, pp. 209-220.
[334] V. Novák, M. Štěpnička, I. Perfilieva, V. Pavliska, Analysis of periodical time series using soft computing methods. In: Proc. FLINS 2008, Singapore, 2008, pp. 55-60.
[335] D. Paternain, M. Pagola, J. Fernandez, R. Mesiar, G. Beliakov, H. Bustince, Brain MRI thresholding using incomparability and overlap functions. In: Proc. ISDA 2011, 2011, pp. 808-812.
[336] I. Perfilieva, Approximating models based on fuzzy transforms. In: Proc. Joint EUSFLAT-LFA Conference, Barcelona, Spain, 2005, pp. 645-650.
[337] I. Perfilieva, Contraction and Dilation Operators in a Semilinear Space over Residuated Lattice. In: Proc. Information Proseccisng and Management of Unicertainty in Knowledge-Based Systems IPMU 08, Malaga, 2008, pp. 1022-1029.
[338] I. Perfilieva, Fixed points and Solvability of Systems of Fuzzy Relations. In: Proc. IFSA World Congress, Berlin, 2007, pp. 841-849.
[339] I. Perfilieva, Fuzzy Relation Equations in Semilinear Space. In: Proc. Czech-Japan Seminar on Data Analysis & Decision Making under Uncertainty – Ninth Meeting, Japonsko, 2006, pp. 146-155.
[340] I. Perfilieva, Fuzzy Transforms and Their Applications to Data Compression. In: Proc. FUZZ-IEEE 2005, Reno, Nevada, 2005, pp. 294-299.
[341] I. Perfilieva, Fuzzy Transforms and Their Applications to Image Compression. In: Proc. 6th International Workshop on Fuzzy Logic and Applications, Heidelberg, 2006, pp. 19-31.
[342] I. Perfilieva, Fuzzy Transforms and Their Applications to Image Compression. In: Proc. 6th International Workshop on Fuzzy Logic and Applications, Heidelberg, 2006, pp. 19-31.
[343] I. Perfilieva, Fuzzy Transforms and Universal Approximation. In: Proc. 3verb_^_d Conference of the European Society for Fuzzy Logic and Technology – EUSFLAT2003, Zittau, Germany, 2003, pp. 529-533.
[344] I. Perfilieva, How to Construct Own Continuous T-Norm. In: Proc. The Sixth International Conference on Intelligent Technologies, Bankgok, 2005, pp. 17-20.
[345] I. Perfilieva, Lipschitz Continuity and Extensionality of Functions Represented by BL-algebra Formulas. In: Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2004, Perugia, 2004, pp. 553-560.
[346] I. Perfilieva, New Criteria of Solvability of a System of Fuzzy Relation Equations. In: Proc. Intern. Conf. on Intelligent Technologies, Chiang Mai, 2003, pp. 525-530.
[347] I. Perfilieva, Normal Forms for Fuzzy Logic Functions. In: Proc. Int. Seminar on Multiple-Valued Logic ISMVL 2003, Tokyo, 2003, pp. 59-64.
[348] I. Perfilieva, Normal Forms for fuzzy relations and their contribution to universal approximation. In: Proc. IPMU 2002, Annecy, 2002, pp. 149-155.
[349] I. Perfilieva, Representation of Fuzzy Logic Functions by Normal Forms. In: Proc. Internat. Conf. on Fuzzy Information Processing, Tsinghua University, Beijing, China, 2003, pp. 65-70.
[350] I. Perfilieva, Semi-Linear Spaces. In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making Under Uncertainty, Hyogo, 2004, pp. 127-130.
[351] I. Perfilieva, Semilinear Spaces – Basic Structures for Fuzzy Systems. In: Proc. IInformation Processing and Management of Uncertainty in Knowledge-based Systems, Paris, 2006, pp. 1580-1587.
[352] I. Perfilieva, Semilinear Spaces – Basic Structures for Fuzzy Systems. In: Proc. IInformation Processing and Management of Uncertainty in Knowledge-based Systems, Paris, 2006, pp. 1580-1587.
[353] I. Perfilieva, Solvability of a System of Fuzzy Relation Equations: Easy to Check Conditions. In: Proc. 3verb_^_d Conference of the European Society for Fuzzy Logic and Technology – EUSFLAT2003, Zittau, Germany, 2003, pp. 517-522.
[354] I. Perfilieva, Systems of Fuzzy Relation Equations in a Space with Fuzzy Preorder. In: Proc. IFSA/EUSFLAT’09, 2009, pp. 1601-1605.
[355] I. Perfilieva, M. Daňková, Image Fusion on the Basis of Fuzzy Transforms. In: Proc. of the 8th International FLINS Conference, New Jersey, 2008, pp. 471-476.
[356] I. Perfilieva, M. Daňková, Towards F-transform of a digher degree. In: Proc. IFSA/EUSFLAT’09, 2009, pp. 585-588.
[357] I. Perfilieva, H. De Meyer, B. De Baets, D. Plšková, Cauchy Problem with Fuzzy Initial Condition and Its Approximate Solution with the Help of Fuzzy Transform. In: Proc. 2008 IEEE World Congress on Computational Intelligence/ FUZZ-IEEE 2008, Hong Kong, 2008, pp. 2287-2292.
[358] I. Perfilieva, E. Khaldeeva, Fuzzy Transformation. In: Proc. 9th IFSA World Congress & 20th NAFIPS Int. Conf., Vancouver, 2002, pp. 1946-1948.
[359] I. Perfilieva, L. Nosková, System of fuzzy relation equations with dual compositions: solvability and solutions. In: Proc. Eleventh International Fuzzy Systems Association World Congress, Beijing, 2005, pp. 1259-1263.
[360] I. Perfilieva, V. Novák, A. Dvořák, How to Mine Linguistic Associations using Fuzzy Transform. In: Proc. NAFIPS’06, Montreal, 2006, pp. 645-648.
[361] I. Perfilieva, V. Novák, V. Kanaikin, Approximation Theorems in Fuzzy Logic for Soft Computing. In: Proc. World Automation Congress, Albuquerque, 2000, pp..
[362] I. Perfilieva, V. Novák, V. Pavliska, A. Dvořák, M. Štěpnička, Analysis and Prediction of Time Series Using Fuzzy Transform. In: Proc. 2008 IEEE World Congress on Computational Intelligence/ FUZZ-IEEE 2008, Hong Kong, 2008, pp. 3876-3880.
[363] I. Perfilieva, V. Novák, V. Pavliska, A. Dvořák, M. Štěpnička, Prediction of Time Series by Soft Computing Methods. In: Proc. 10th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Praha, 2007, pp. 119-129.
[364] I. Perfilieva, V. Pavliska, M. Vajgl, B. Debaets, Advanced Image Compression on the Basis of Fuzzy Transforms. In: Proc. Information Proseccisng and Management of Unicertainty in Knowledge-Based Systems IPMU 08, Malaga, 2008, pp. 1167-1174.
[365] I. Perfilieva, D. Plšková, Solving ODE with Fuzzy Initial Condition Using Fuzzy Transform. In: Proc. 10th Czech-Japan Seminar on data Analysis and Decision Making under Uncertainty, Praha, 2007, pp. 130-139.
[366] I. Perfilieva, A.A. Stecko, T.R. Junusov, N.G. Jaruškina, Prinjatie proektnych reshenij na osnove analiza nechetkih tendencij vremennych rjadov. In: Proc. 11th All-Russian Artificial Intelligence Conference, Dubna, Russia, 2008, pp. 107-115.
[367] I. Perfilieva, R. Valášek, Data compression on the basis of fuzzy transforms. In: Proc. Joint EUSFLAT-LFA Conference, Barcelona, Spain, 2005, pp. 663-668.
[368] I. Perfilieva, R. Valášek, Fuzzy Approach to Data Compression. In: Proc. 8th Czech-Japan Seminar on data Analysis and Decision Making under Uncertainty, Praha, 2005, pp. 91-100.
[369] I. Perfilieva, R. Valášek, Fuzzy Transforms in Removing Noise. In: Proc. Fuzzy Days, Berlin, 2005, pp. 225-234.
[370] I. Perfilieva, N. Yarushkina, T. Afanasieva, A. Romanov, Internet service for the analysis of enterprise economics using time series fuzzy modeling. In: Proc. IFSA-NAFIPS 2013, Edmonton, Canada, 2013, pp. 1113-1118.
[371] I. Perfiljeva, A Profound Theory of Fuzzy Interpolation. In: Proc. International Conference on Rough Sets, Fuzzy Sets and Soft Computing, New Delhi, India, 2011, pp. 195-205.
[372] I. Perfiljeva, At-least At-most Modifications in a Space with Fuzzy Preoreder. In: Proc. EUSFLAT 2013, Milano, Italy, 2013, pp. 642-647.
[373] I. Perfiljeva, At-least At-most Modifications in a Space with Fuzzy Preoreder. In: Proc. EUSFLAT 2013, Milano, Italy, 2013, pp. 642-647.
[374] I. Perfiljeva, Cramer?s Rule for Systems of Fuzzy Relation Equations. In: Proc. World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011, 2011, pp. 2221-2226.
[375] I. Perfiljeva, Duality in Residuated Structures. In: Proc. 9th Workshop on Uncertainty Processing, Prague, 2012, pp. 170-175.
[376] I. Perfiljeva, Duality in Residuated Structures. In: Proc. 9th Workshop on Uncertainty Processing, Prague, 2012, pp. 170-175.
[377] I. Perfiljeva, F-transform versus Takagi-Sugeno Models. In: Proc. NAFIPS 2009, Cincinnati, Ohio, 2009, pp. 562-565.
[378] I. Perfiljeva, F-transform versus Takagi-Sugeno Models. In: Proc. NAFIPS 2009, Cincinnati, Ohio, 2009, pp. 562-565.
[379] I. Perfiljeva, Fuzzy Function: Theoretical and Practical Point of View. In: Proc. EUSFLAT 2011, Amsterdam, 2011, pp. 480-486.
[380] I. Perfiljeva, Fuzzy Relation Equations in Semilinear Spaces. In: Proc. Inform.Processing and Management of Uncert. in Knowledge-Based Systems – IPMU 2010, Berlin, 2010, pp. 545-552.
[381] I. Perfiljeva, Fuzzy Transform — a New Paradigm in Fuzzy Modeling. In: Proc. ODAM2011, Olomouc, 2011, pp. 53-53.
[382] I. Perfiljeva, Fuzzy Transform as a New Paradigm in Fuzzy Modeling. In: Proc. FLINS 2010, New Jersey, 2010, pp. 29-39.
[383] I. Perfiljeva, Linear Representation of Residuated Lattices. In: Proc. 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Berlin Heidelberg, 2012, pp. 206-215.
[384] I. Perfiljeva, Residuated Lattices as Extensions of Elementary Algebraic Structures. In: Proc. Quantitative logic and soft computing (QL&SC) 2012, Singapore, 2012, pp. 581-588.
[385] I. Perfiljeva, Residuated Lattices as Extensions of Elementary Algebraic Structures. In: Proc. Quantitative logic and soft computing (QL&SC) 2012, Singapore, 2012, pp. 581-588.
[386] I. Perfiljeva, Semilinear Space, Galois Connections and Fuzzy Relation Equations.. In: Proc. Quantitative logic and soft computing (QL&SC) 2010, Berlin, 2010, pp. 71-79.
[387] I. Perfiljeva, M. Daňková, Two Approaches to Image Fusion. In: Proc. ELEVENTH INTERNATIONAL CONFERENCE ON FUZZY SET THEORY AND APPLICATIONS, Liptovský Mikuláš, 2012, pp. 90-90.
[388] I. Perfiljeva, M. Daňková, P. Hoďáková, M. Vajgl, Edge detection using F-transform. In: Proc. ISDA 2011, 2011, pp. 672-677.
[389] I. Perfiljeva, M. Daňková, P. Hoďáková, M. Vajgl, The Use of F-Transform for Image Fusion Algorithms. In: Proc. SoCPaR 2010, 2010, pp. 472-477.
[390] I. Perfiljeva, P. Hurtík, F-Transform for Image Reduction. In: Proc. 16th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Jindřichův Hradec, 2013, pp. 205-214.
[391] I. Perfiljeva, J. Kupka, Kronecker-Capelli Theorem in Semilinear Spaces. In: Proc. FLINS 2010, New Jersey, 2010, pp. 43-51.
[392] I. Perfiljeva, V. Novák, A. Romanov, N. Yarushkina, Time series grouping and trend forecast using F1-transform and fuzzy natural logic. In: Proc. 11th International FLINS Conference, New Jersey, 2014, pp. 143-148.
[393] I. Perfiljeva, V. Pavliska, First degree F-transform versus Takagi-Sugeno models. In: Proc. Tenth International Conference on Fuzzy Set Theory and Applications, Liptovský Mikuláš, 2010, pp. 103-104.
[394] I. Perfiljeva, V. Pavliska, R. Valášek, F2-transform-Based Solution of the Cauchy Problem. In: Proc. 11th International FLINS Conference, New Jersey, 2014, pp. 239-245.
[395] I. Perfiljeva, V. Pavliska, R. Valášek, F2-transform-Based Solution of the Cauchy Problem. In: Proc. 11th International FLINS Conference, New Jersey, 2014, pp. 239-245.
[396] I. Perfiljeva, A. Šostak, Fuzzy Function and the Generalized Extension Principle. In: Proc. FCTA 2014, Lisboa, Portugal, 2014, pp. 169-174.
[397] I. Perfiljeva, M. Vajgl, Novel Image Fusion Based on F-transform. In: Proc. WSCS 2012, Switzerland, 2014, pp. 149-164.
[398] I. Perfiljeva, N. Yarushkina, T.V. Afanas’jeva, A. Romanov, Granular Time Series and Fuzzy Tendencies Forecasting. In: Proc. World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011, Surabaya-Bali, Indonesia, 2011, pp. 21-25.
[399] I. Perfiljeva, N. Yarushkina, T.V. Afanas’jeva, A. Romanov, A. Igonin, V. Shishkina, Time Series Processing and Forecasting using Soft Computing Tools. In: Proc. 13th International Conference, RSFDGrC 2011, Moscow, Russia, 2011, pp. 155-163.
[400] I. Perfiljeva, N. Yarushkina, T.V. Afanas’jeva, A. Romanov, A. Igonin, V. Shishkina, Time Series Processing and Forecasting using Soft Computing Tools. In: Proc. 13th International Conference, RSFDGrC 2011, Moscow, Russia, 2011, pp. 155-163.
[401] I. Perfiljeva, N. Yarushkina, T. Afanasieva, Relaxed Discrete F-Transform and its Application to the Time Series Analysis. In: Proc. FLINS 2010, New Jersey, 2010, pp. 249-255.
[402] I. Perfiljeva, N. Yarushkina, T. Afanasieva, Time Series Analysis By Discrete F-Transform. In: Proc. IEEE World Congress on Computational Intelligence, Barcelona, 2010, pp. 3088-3091.
[403] M. PETRÍK, R. Mesiar, Web-geometric view on uninorms and structure of some special classes. In: Proc. 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Heidelberg, 2012, pp. 371-378.
[404] D. Plšková, Convergence of the Inverse F-Transform. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 87-87.
[405] R. Poláková, A Modification of Adaptive Differential Evolution. In: Proc. ISCAMI 2013, 2013, pp. 57-57.
[406] R. Poláková, A Modification of Adaptive Differential Evolution. In: Proc. ISCAMI 2013, 2013, pp. 57-57.
[407] R. Poláková, J. Tvrdík, Competitive Differential Evolution Algorithm in Comparison with Other Adaptive Variants. In: Proc. SOCO 7th International Conference on Soft Computing Models in Industrial and Environmental Applications, 2013, pp. 133-142.
[408] R. Poláková, J. Tvrdík, Competitive Differential Evolution Algorithm in Comparison with Other Adaptive Variants. In: Proc. SOCO 7th International Conference on Soft Computing Models in Industrial and Environmental Applications, 2013, pp. 133-142.
[409] R. Poláková, J. Tvrdík, Various Mutation Strategies in Enhanced Competitive Differential Evolution for Constrained Optimization. In: Proc. IEEE Symposium Series on Computational Intelligence, 2011, pp. 17-24.
[410] R. Poláková, J. Tvrdík, P. Bujok, Controlled Restart in Differential Evolution Applied to CEC2014 Benchmark Functions. In: Proc. WCCI 2014, 2014, pp. 2230-2236.
[411] O. Polakovič, Dynamic Robot Control Based on the Neural Network. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 88-88.
[412] J. Procházka, C. Klimeš, Information System Process Management using Petri nets (in Czech). In: Proc. Svět informačních systémů 2007, Zlín, 2007, pp. 127-133.
[413] J. Procházka, J. Knybel, C. Klimeš, Fuzzy Petri Nets in Modelling Business Processes. In: Proc. International Conference The Logic of Soft Computing IV, Ostrava, 2005, pp. 31-35.
[414] P. Přibyl, V. Novák, Multiparameter-Optimized Ventilation of City Tunnel. In: Proc. 2nd Int. Conf. Tunnel Control and Communication, Amsterdam, 1997, pp..
[415] J. Ramík, Compromise Decisions in Multicriteria Optimization. In: Proc. MME´98, 1998, pp. 80-88.
[416] J. Ramík, Fuzzy Goals and Fuzzy Alternatives in Goal Programming Problems. In: Proc. VIIth IFSA World Congress, Prague, 1997, pp. 39-42.
[417] P. Rusnok, J. Kupka, The Role of a T-norm and Partitioning in Fuzzy Association Analysis. In: Proc. 7th International Conference on Soft Methods in Probability and Statistics, 2014, pp. 283-291.
[418] P. Rusnok, J. Kupka, The Role of a T-norm and Partitioning in Fuzzy Association Analysis. In: Proc. 7th International Conference on Soft Methods in Probability and Statistics, 2014, pp. 283-291.
[419] S. Saminger, E.P. Klement, R. Mesiar, A note on ordinal sums of t-norms and t-subnorms on bounded lattices. In: Proc. IPMU’2006, Paris, 2006, pp. 664-670.
[420] D. Sikora, M. Štěpnička, L. Vavříčková, On the Potential of Fuzzy Rule-Based Ensemble Forecasting. In: Proc. 7th International Conference on Soft Computing Models in Industrial and Environmental Applications, Berlín, 2013, pp. 487-496.
[421] R. Smolíková, M.P. Wachowiak, G.D. Tourassi, J.M. Zurada, Neural Estimation of Scatterer Density in Ultrasound. In: Proc. INNS-IEEE Joint Conference on Neural Networks, Honolulu, 2002, pp. 1696-1701.
[422] R. Smolíková, M.P. Wachowiak, J.M. Zurada, A.S. Elmagharby, Segmentation of Ultrasound Images with Speckle Modeling, Analysis of Biomedical Signals and Images. In: Proc. IEEE EMBS/EUROSIP Int. Conf., 2002, pp. 316-319.
[423] I. Štajner-Papuga, T. Grbic, M. Daňková, A note on pseudo Riemann-Stieltjes integral. In: Proc. SISY2007, Subotica, 2007, pp. 59-63.
[424] I. Štajner-Papuga, T. Grbic, M. Daňková, Riemann-Stieltjes type integral based on generated pseudo-operations. In: Proc. SISY2006, Subotica, 2006, pp. 247-256.
[425] M. Štěpnička, Fuzzy Transform for Practical Problems. In: Proc. Inteligentní systémy pro praxi, Ostrava, 2007, pp. 39-40.
[426] M. Štěpnička, On Fundamental Mathematical Properties of Fuzzy Inference Systems. In: Proc. 13th Czech-Japan seminar on data analysis and decision making in service sciences, Otaru, Japan, 2010, pp. 7-12.
[427] M. Štěpnička, On Mutual Compatibility of Mathematical Properties of Fuzzy Inference Systems. In: Proc. World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011, 2011, pp. 2131-2136.
[428] M. Štěpnička, Towards fuzzy interpolation with uv{at least — at most} fuzzy rule bases. In: Proc. FLINS 2010, Singapore, 2010, pp. 222-228.
[429] M. Štěpnička, B. De Baets, Monotonicity of implicative fuzzy models. In: Proc. IEEE World Congress on Computational Intelligence, Barcelona, 2010, pp. 2334-2340.
[430] M. Štěpnička, B. De Baets, M. Daňková, Monotonicity of implicative fuzzy models. In: Proc. International Conference on Fuzzy Set Theory and Applications – FSTA, Liptovský Ján, 2008, pp. 121-122.
[431] M. Štěpnička, B. De Baets, L. Nosková, On Additive and Multiplicative Fuzzy Models. In: Proc. 5th EUSFLAT, Ostrava, 2007, pp. 95-102.
[432] M. Štěpnička, J.P. Donate, P. Cortez, L. Vavříčková, G. Gutierrez, Forecasting seasonal time series with computational intelligence: contribution of a combination of distinct methods.. In: Proc. EUSFLAT 2011, 2011, pp. 464-471.
[433] M. Štěpnička, A. Dvořák, V. Pavliska, L. Vavříčková, Linguistic approach to time series analysis and forecasts. In: Proc. IEEE World Congress on Computational Intelligence, Barcelona, 2010, pp. 2149-2157.
[434] M. Štěpnička, B. Jayaram, On the computational aspects of the BK-Subproduct inference mechanism. In: Proc. IEEE International Conference on Fuzzy Systems, Jeju, Jižní Korea, 2009, pp. 1181-1186.
[435] M. Štěpnička, B. Jayaram, On the computational aspects of the BK-Subproduct inference mechanism. In: Proc. IEEE International Conference on Fuzzy Systems, Jeju, Jižní Korea, 2009, pp. 1181-1186.
[436] M. Štěpnička, B. Jayaram, The Bandler-Kohout Subproduct as a Suitable Inference Mechanism. In: Proc. IFSA/EUSFLAT’09, 2009, pp. 432-437.
[437] M. Štěpnička, B. Jayaram, The Bandler-Kohout Subproduct as a Suitable Inference Mechanism. In: Proc. IFSA/EUSFLAT’09, 2009, pp. 432-437.
[438] M. Štěpnička, S. Lehmke, Approximation of Fuzzy Functions by Extended Fuzzy Transforms. In: Proc. Fuzzy Days, Berlin, Heidelberg, New York, 2005, pp. 187-195.
[439] M. Štěpnička, L. Nosková, Systems of Fuzzy Relation Equations: New Solvability Criteria Based on the Orthogonality Condition. In: Proc. Czech-Japan Seminar on Data Analysis & Decision Making under Uncertainty – Ninth Meeting, Japonsko, 2006, pp. 352-356.
[440] M. Štěpnička, V. Pavliska, V. Novák, I. Perfilieva, L. Vavříčková, I. TOMANOVÁ, Time Series Analysis and Prediction Based on Fuzzy Rules and the Fuzzy Transform. In: Proc. IFSA/EUSFLAT’09, Lisabon, 2009, pp. 483-488.
[441] M. Štěpnička, V. Pavliska, V. Novák, I. Perfilieva, L. Vavříčková, I. TOMANOVÁ, Time Series Analysis and Prediction Based on Fuzzy Rules and the Fuzzy Transform. In: Proc. IFSA/EUSFLAT’09, Lisabon, 2009, pp. 483-488.
[442] M. Štěpnička, O. Polakovič, A neural network approach to the fuzzy transform. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 101-102.
[443] M. Štěpnička, O. Polakovič, A neural network approach to the fuzzy transform. In: Proc. 8th International Conference on Fuzzy Set Theory an Applications FSTA’06, Liptovský Mikuláš, Slovensko, 2006, pp. 101-102.
[444] M. Štěpnička, O. Polakovič, Fuzzy Transform from a Neural Network Point of View. In: Proc. IPMU 2006 (IInformation Processing and Management of Uncertainty in Knowledge-based Systems), Paris, 2006, pp. 1860-1867.
[445] M. Štěpnička, O. Polakovič, Fuzzy Transform from a Neural Network Point of View. In: Proc. IPMU 2006 (IInformation Processing and Management of Uncertainty in Knowledge-based Systems), Paris, 2006, pp. 1860-1867.
[446] M. Štěpnička, R. Valášek, Approximation Based Fuzzy Control. In: Proc. 8th Czech-Japan Seminar on data Analysis and Decision Making under Uncertainty, Praha, 2005, pp. 131-139.
[447] M. Štěpnička, R. Valášek, Fuzzy Transforms and Their Application to Heat Flow Equation. In: Proc. FLLL/SCCH Master and PhD Seminar, Hagenberg, Rakousko, 2004, pp. 51-56.
[448] M. Štěpnička, R. Valášek, Fuzzy Transforms for Functions with Two Variables. In: Proc. 6th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2003, Ostrava, 2003, pp. 96-102.
[449] M. Štěpnička, R. Valášek, Generating a Fuzzy Rule Base with an Additive Interpretation. In: Proc. 16th IFAC World Congress, Praha, 2006, pp. 233-238.
[450] M. Štěpnička, R. Valášek, Generating a Fuzzy Rule Base with an Additive Interpretation. In: Proc. 16th IFAC World Congress, Praha, 2006, pp. 233-238.
[451] M. Štěpnička, R. Valášek, Numerical Solution of Partial Differential Equations with Help of Fuzzy Transform. In: Proc. FUZZ-IEEE2005 The international Conference on FUZZY Systems, Reno, Nevada, 2005, pp. 1104-1109.
[452] L. Štěpničková, M. Štěpnička, D. Sikora, Fuzzy rule-based ensemble with use of linguistic associations mining for time series prediction. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 408-415.
[453] L. Štěpničková, M. Štěpnička, D. Sikora, Fuzzy rule-based ensemble with use of linguistic associations mining for time series prediction. In: Proc. European Society for Fuzzy Logic and Technology, 2013, pp. 408-415.
[454] I. Tomanová, J. Kupka, Implementation of background knowledge and properties induced by fuzzy confirmation measures in Apriori algorithm. In: Proc. International Joint Conference CISIS´12-ICEUTE´12-SOCO´12 Special Sessions, Berlin, 2013, pp. 533-542.
[455] I. Tomanová, J. Kupka, Implementation of background knowledge and properties induced by fuzzy confirmation measures in Apriori algorithm. In: Proc. International Joint Conference CISIS´12-ICEUTE´12-SOCO´12 Special Sessions, Berlin, 2013, pp. 533-542.
[456] J. Tvrdík, A Comparison of Control-Parameter-Free Algorithms for Single-Objective Optimization. In: Proc. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, Brno, 2010, pp. 71-77.
[457] J. Tvrdík, Adaptation In Differential Evolution: A Comparison On Composition Test Functions. In: Proc. MENDEL 2007, 13th International Conference on Soft Computing, Brno, 2007, pp. 1-6.
[458] J. Tvrdík, Adaptive Differential Evolution: Application to Nonlinear Regression. In: Proc. IMCSIT 2007, Wisla, 2007, pp. 193-202.
[459] J. Tvrdík, Adaptivní stochastické algoritmy – principy a aplikace. In: Proc. Analýza dat 2006/II, Pardubice, 2007, pp. 113-125.
[460] J. Tvrdík, Adaptivní stochastické algoritmy v nelineární regresi. In: Proc. ROBUST 2008, Praha, 2009, pp. 453-460.
[461] J. Tvrdík, Adaptivní stochastické algoritmy v nelineární regresi. In: Proc. ROBUST 2008, Praha, 2009, pp. 453-460.
[462] J. Tvrdík, Competition and Cooperation in Evolutionary Algorithms: A Comparative Study. In: Proc. MENDEL 2005, 11th International Conference on Soft Computing, Brno, 2005, pp. 108-113.
[463] J. Tvrdík, Competitive differential evolution and genetic algorithm in GA-DS Toolbox. In: Proc. Technical Computing Prague 2006, Praha, 2006, pp. 99-99.
[464] J. Tvrdík, Differential Evolution: Competitive Setting of Control Parameters. In: Proc. IMCSIT 2006, Wisla, 2006, pp. 207-213.
[465] J. Tvrdík, Differential Evolution: Competitive Setting of Control Parameters. In: Proc. IMCSIT 2006, Wisla, 2006, pp. 207-213.
[466] J. Tvrdík, Evoluční algoritmy – principy a příklady. In: Proc. Analýza dat 2005, Pardubice, 2005, pp. 159-171.
[467] J. Tvrdík, Evoluční algoritmy s adaptací řídících parametrů. In: Proc. Inteligentní systémy pro praxi, Ostrava, 2007, pp. 37-38.
[468] J. Tvrdík, Modifications of Differential Evolution with Composite Trial Vector Generation Strategies. In: Proc. SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 2013, pp. 113-122.
[469] J. Tvrdík, Modifications of Differential Evolution with Composite Trial Vector Generation Strategies. In: Proc. SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 2013, pp. 113-122.
[470] J. Tvrdík, Robust Algorithm for Estimation of Parameters in Non-linear Regression Model. In: Proc. Technical Computing Prague 2005, Praha, 2005, pp. 124-124.
[471] J. Tvrdík, I. Křivý, Adaptivní stochastické algoritmy pro globální optimalizaci. In: Proc. Přínos univezit k transformaci regionů, Ostrava, 2006, pp. 153-160.
[472] J. Tvrdík, I. Křivý, Comparison of algorithms for nonlinear regression estimates. In: Proc. COMPSTAT 2004, Heidelberg, New York, 2004, pp. 1917-1924.
[473] J. Tvrdík, I. Křivý, Competitive Self-Adaptation in Evolutionary Algorithms. In: Proc. 5th Conference of European Society for Fuzzy Logic and Technology, Ostrava, 2007, pp. 251-258.
[474] J. Tvrdík, I. Křivý, Differential Evolution in Partitional Clustering. In: Proc. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, Brno, 2010, pp. 7-14.
[475] J. Tvrdík, I. Křivý, Hybrid Adaptive Differential Evolution in Partitional Clustering. In: Proc. MENDEL 2011 17th International Conference on Soft Computing, Brno, 2011, pp. 1-8.
[476] J. Tvrdík, I. Křivý, L. Mišík, Adaptive Population-Based Algorithm for Global Optimization. In: Proc. COMPSTAT 2006, Heidelberg, 2006, pp. 1363-1370.
[477] J. Tvrdík, I. Křivý, L. Mišík, Adaptive Population-Based Algorithm for Global Optimization. In: Proc. COMPSTAT 2006, Heidelberg, 2006, pp. 1363-1370.
[478] J. Tvrdík, I. Křivý, L. Mišík, Competing Heuristics-Experimental Study. In: Proc. MENDEL 2002, 8th International Conference on Soft Computing (Matoušek R. and Ošmera P. eds), Brno, 2002, pp. 74-79.
[479] J. Tvrdík, I. Křivý, L. Mišík, Evolutionary Algorithm with Competing Heuristics. In: Proc. 7th International Conference on Soft Computing, Brno, 2001, pp. 58-64.
[480] J. Tvrdík, V. Pavliska, H. Habiballa, Matlab Program Library for Box-Costrained Global Optimization. In: Proc. APLIMAT 2007, Bratislava, 2007, pp. 463-470.
[481] J. Tvrdík, R. Poláková, Competitive Differential Evolution Applied to CEC 2013 Problems. In: Proc. IEEE Congress on Evolutionary Computation 2013, USA, 2013, pp. 1651-1657.
[482] J. Tvrdík, R. Poláková, Competitive Differential Evolution for Constrained Problems. In: Proc. IEEE CEC 2010, 2010, pp. 1632-1639.
[483] J. Tvrdík, R. Poláková, Competitive-adaptive differential evolution with rotation-invariant strategies. In: Proc. 20th International Conference on Soft Computing MENDEL 2014, Brno, 2014, pp. 59-64.
[484] J. Tvrdík, R. Poláková, Competitive-adaptive differential evolution with rotation-invariant strategies. In: Proc. 20th International Conference on Soft Computing MENDEL 2014, Brno, 2014, pp. 59-64.
[485] J. Tvrdík, R. Poláková, Enhanced Competitive Differential Evolution for Constrained Optimization. In: Proc. International Multiconference on Computer Science and Information Technology, Poland, 2010, pp. 909-915.
[486] J. Tvrdík, R. Poláková, P. Bujok, A Comparison of Adaptive Differential Evolution Variants for Single-Objective Optimization. In: Proc. 18th International Conference on Soft Computing MENDEL 2012, Brno, 2012, pp. 132-137.
[487] J. Tvrdík, R. Poláková, P. Bujok, A Comparison of Adaptive Differential Evolution Variants for Single-Objective Optimization. In: Proc. 18th International Conference on Soft Computing MENDEL 2012, Brno, 2012, pp. 132-137.
[488] M. Vajgl, P. Hurtík, I. Perfiljeva, P. Hoďáková, Image Composition Using F-Transform. In: Proc. IEEE World Congress on Computational Intelligence, 2014, pp. 1112-1117.
[489] P. VLAŠÁNEK, I. Perfiljeva, Influence of various types of basic functions on image reconstruction using F-transform. In: Proc. EUSFLAT, 2013, pp. 497-502.
[490] P. VLAŠÁNEK, I. Perfiljeva, Interpolation techniques versus F-transform in application to image reconstruction. In: Proc. FUZZ-IEEE, 2014, pp. 533-539.
[491] P. VLAŠÁNEK, I. Perfiljeva, Interpolation techniques versus F-transform in application to image reconstruction. In: Proc. FUZZ-IEEE, 2014, pp. 533-539.
[492] B. Walek, Fuzzy tool for customer satisfaction analysis in CRM systems. In: Proc. 36th International Conference on Telecommunications and Signal Processing, TSP 2013, Brno, 2013, pp. 11-14.
[493] B. Walek, J. Bartoš, J. Žáček, Proposal of The Expert System for Conducting Information Security Risk Analysis. In: Proc. The International Conference on Electrical and Electronics Engineering, Clean Energy and Green Computing (EEECEGC2013), 2013, pp. 58-68.
[494] B. Walek, J. BARTOŠ, EXPERT SYSTEM FOR EVALUATION OF SATISFACTION OF EMPLOYEES. In: Proc. 11th International FLINS Conference on Decision Making and Soft Computing (FLINS2014), 2014, pp. 62-67.
[495] B. Walek, J. BARTOŠ, EXPERT SYSTEM FOR SELECTION OF SUITABLE JOB APPLICANTS. In: Proc. 11th International FLINS Conference on Decision Making and Soft Computing (FLINS2014), Singapore, 2014, pp. 68-73.
[496] B. Walek, J. BARTOŠ, EXPERT SYSTEM FOR SELECTION OF SUITABLE JOB APPLICANTS. In: Proc. 11th International FLINS Conference on Decision Making and Soft Computing (FLINS2014), Singapore, 2014, pp. 68-73.
[497] B. Walek, M. Janošek, J. Žáček, R. Farana, Adaptive Fuzzy Control of Thermal Comfort in Smart Houses. In: Proc. 15th International Carpathian Control Conference, ICCC 2014, Velké Karlovice, 2014, pp. 675-678.
[498] B. Walek, M. Janošek, J. Žáček, R. Farana, Adaptive Fuzzy Control of Thermal Comfort in Smart Houses. In: Proc. 15th International Carpathian Control Conference, ICCC 2014, Velké Karlovice, 2014, pp. 675-678.
[499] J. Žáček, F. Huňka, Data warehouse minimization with ELT fuzzy filter. In: Proc. 18th International Conference on Computers, 2014, pp. 450-454.
[500] J. Žáček, F. Huňka, Data warehouse minimization with ELT fuzzy filter. In: Proc. 18th International Conference on Computers, 2014, pp. 450-454.
[501] J. Žáček, M. Janošek, Programmable control of Heating for Systems with Long Time Delays. In: Proc. 15th International Carpathian Control Conference (ICCC), Velké Karlovice, 2014, pp. 705-709.
[502] J. Žáček, M. Janošek, Programmable control of Heating for Systems with Long Time Delays. In: Proc. 15th International Carpathian Control Conference (ICCC), Velké Karlovice, 2014, pp. 705-709.
[503] J. ŽÁČEK, F. Huňka, Object model synchronization based on Petri net. In: Proc. 17th International Conference on Soft Computing MENDEL 2011, 2011, pp. 523-527.
[504] J. ŽÁČEK, F. Huňka, Reusable object-oriented model. In: Proc. 5th IFIP TC2 Central and Eastern European Conference on Software Engineering Techniques (CEE-SET’2011), Debrecen, Maďarsko, 2011, pp. 176-188.